> Hydrologic Cycle

- o Hydrologic Cycle : a model for where water is stored on Earth & how it moves from one place to another
 - The hydrologic cycle is powered by the sun
 - Understanding how water travels between Earth's surface & atmosphere is crucial to being able to predict the climate & the availability of water in various parts of the world, & to formulating plans to help people adapt to climate changes brought about by global warming.

• Hydrologic **Reservoirs**: where the water is stored

Reservoir	Volume (10 ⁶ km ³)	Percent of total	• Ocean Reservoir: all waters contained within the ocean basins, including sea ic			
Oceans and sea ice	1400	95.96	 divided into the mixed layer, the thermocline layer, & the abyssal lay 			
Glaciers and land ice	43.4	2.97	 each layer transports & exchanges water in different ways 			
Surface waters						
Lakes	0.125	0.009	• Land Reservoirs: all surface waters within the lakes, rivers, streams, & ponds			
Rivers	0.0017	0.0001				
Subsurface waters			Les 9 Generes Deservation in charles all a faite less d'fractions als since automations for			
Groundwater	15.3	1.05	 Ice & Snow Reservoir: includes all of the land-fast ice, glaciers, snow, & permafr 			
Soil Moisture	0.065	0.0045				
Atmosphere	0.0155	0.001	• Subsurface Reservoir: includes all of the water in underground caverns			
Biosphere	0.002	0.0001	& in the soil, sediments, & permeable rock			
Total	1459	100				

- o Hydrologic Pathways: how water moves from one reservoir to another
 - **Evaporation** : evaporation of seawater leaves the salts behind, thereby **†** salinity
 - **Precipitation** : Adds freshwater, thereby \checkmark **salinity**
 - **Freezing** : Formation of ice leaves behind salts, called **brine rejection**, thereby **1** salinity
 - **Melting** : Melting of ice adds freshwater & \checkmark salinity
- **GLOBAL WATER CYCLE** Space 40 Vapour trans tmosphere Cloud Precipitation Clouds Water (H20) Cycle 425 Tran Precipitation Evaporation Evaporation Geosphere River discharge Ice and snow 250 Run-Off Lakes & Groundwater flow Seepage Ocean 1 350 000 Oceans Storages 10¹² m¹ Flows 10¹² m³/year Groundwater 84
- Hydrologic **Rate Processes**: rate at which water is transported between reservoirs by a particular process

The Hydrologic Cycle

Major Hydrologic Cycle Pathways and Processes

Additional Hydrologic Cycle Pathways and Processes

Global Water Cycle

Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Cultural Organisation (UNESCO, Paris), 1999; Max Planck, Institute for Meteorology, Hamburg, 1994; Freeze, Allen, John, Cherry, Groundwater, Prentice-Hall: Engle wood Cliffs NJ, 1979.

> Properties of Water

- Water is a **polar molecule >** accounting for water's unusual properties.
- Water exists on Earth in all 3 phases (it's the only substance to do this)
- Ice Floats !
- Water has very high Heat Capacity
- The Oceans moderate global temperatures.
- Absorption, Refraction, & Reflection play important roles in Light & Sound transmission in the ocean.
- Most of Earth's free water is in the ocean

Property	Comparison	Importance	Notes	
🛉 Physical State	Only substance to naturally occur in all three states	Considerably more abundant at Earth's surface as all other substances combined		
Surface Tension	Highest of all common liquids	Controls drop and bubble formation	High surface tension $ ightarrow$ why insects can walk on water	
Thermal Expansion	Expands upon freezing	Ice floats	Unusual that when it freezes it expands, while everything else becomes denser & sinks as they freeze	
Latent Heat	Highest except for ammonia	Thermostatic effect at freezing point	"Thermostatic effect" it takes a lot of heat to change water into ice	
Heat of Evaporation	Highest of all substances	Heat and water transfer between ocean and atmosphere		
Heat Capacity	Highest except for liquid ammonia	Prevents extreme ranges in ocean temperatures		
Dissolving Power	Best Solvent	All substances dissolve in water	Everything will eventually dissolve in water	
Transparency	High in the Visible Low in UV and Infrared	Photosynthesis Absorption of Solar energy	High transparency in the visible is important for photosynthesis Low transparency in the IR \rightarrow high absorption in the atmosphere	

• Where did water come from?

- Outgassing as Earth Cooled: all the water came from the processes of the Earth's formation
- Comet impacts: more recent theories indicate a more constant in port of water

> Distribution of Earth's Water

• Composition of Seawater

ION	Gram weight per kg	% by weight
★ Chloride - Cl	19.111	55.04
★ Sodium - Na ⁺	10.629	30.61
Sulfate - SO42-	2.667	7.68
Magnesium - Mg ²⁺	1.281	3.96
Calcium - Ca ²⁺	0.403	1.16
Potassium- K	0.383	1.10
Bicarbonate - HCO ₃	0.141	0.41
Bromide - Br	0.065	0.19
Boric Acid - H ₂ BO ₃	0.026	0.07
Strontium - Sr ²⁺	0.013	0.04
Fluoride - F	0.001	0.00

These First 7 Ions sum to 99.69%, all 11 Ions sum to 99.9% (any variation in these numbers occurs in the 4 or 5^{th} significant digit)

This concept is called the "Law of Constant Proportions," the ocean is well mixed & only really changes at the sources and sinks

• Physical Properties of Seawater

Physical Properties of Seawater				
Increase with Increasing Salinity	Decrease with Increasing Salinity			
 Density Refractive Index Electrical Conductivity Speed of Sound Surface Tension (wake lasts longer in seawater than in freshwater) 	 Freezing Point Temperature of Maximum Density Compressibility (pure H₂0 can't be compressed much) Solubility of Non-Reacting Gases Specific Heat 			

pH of Seawater pH – measure of the concentration of H+ ions 0 7 14

Acid Neutral Basic

pH of seawater = 7.5 to 8.1

The pH of seawater is buffered by dissolved CO_2

Hydrologic Processes & Salinity

- all of these processes also affect the Salinity of seawater, which in turn will affect the density

Hydrologic Processes & Density \geq

Processes that Increase Salinity

- Evaporation of surface waters
- Ice cooling (icebergs) of surrounding waters
- Brine Rejection during Sea Ice Formation
- Atmospheric cooling of surface waters by winds or heat exchange

Processes that Decrease Salinity

- Solar heating of surface waters
- Hydrothermal heating of bottom waters
- Rainfall & other forms of precipitation at sea
- Runoff of freshwater from land & underground
- Melting of sea ice or icebergs
- Atmospheric heating of surface waters
- all of these processes also affect the density of seawater, which has important effects on ocean circulation

Processes that Raise Density

- Evaporation of surface waters
- Ice cooling (icebergs) of surrounding waters
- Brine Rejection during Sea Ice Formation
- Atmospheric cooling of surface waters by winds or heat exchange

Processes that Lower Density

- Solar heating of surface waters
- Hydrothermal heating of bottom waters
- Rainfall & other forms of precipitation at sea
- Runoff of freshwater from land & underground
- Melting of sea ice or icebergs
- Atmospheric heating of surface waters
- Important Exchanges of Energy & Matter across the Air-Sea Interface \geq

