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 What is a Model 
- A mathematical formulation intended to represent a natural phenomenon or system 

- Models can be considered to be an experimental science, since model simulations can also be used to test the 
validity of the hypothesis & to generate new hypotheses 

- Models complement field work they don’t replace it 

- You can never build a model that replicates what is actually occurring in nature, because nature is too complex to 
ever be perfectly modeled, the point is to come as close as you can to the truth 

- Models are the only scientific means of predicting the future 

 Deterministic vs. Stochastic Models 
Deterministic Models 

- have no random variables 

- a model that has only one solution, in some cases this means 

that the model only describes the trend.   

- Their most important property is that we can predict the exact 

value of the variable of interest at any future time                           

(given we know the pattern of change up to the present time) 

Stochastic Models 

- Contains random variables 

-  

 Odum diagrams 

- represent only energy flows, fairly implicit & simple in appearance, & relatively easy to turn into mathematical expressions 

- Whatever goes into a model MUST come put, the model must be balanced 

- Every arrow MUST be described as a term in a differential equation 

- Diagrams are important when working with complex models because they have a visual basis for equation 
building, & different people can just focus on their specialties & then compile their codes to make the model 

H.T. Odum’s System of Generic Symbols (Energy Circuit/Systems Language Symbols) 

           

 Logistic Growth 
 

- Models the “S-shaped” curve of population growth which are found with K-selected populations 
(limited by carrying capacity) 
 

 

 Difference vs.   Differential equations 
Difference Equations 

- Equations that recursively define a sequence 

- each term of the sequence is defined                               
as a function of the preceding terms 

- you use old values to calculate new ones 

- have an implicit timestep 

ex1.  Logistic Equation  

ex2.  Fibonacci Numbers (1, 2, 3, 5, 8) 

ex3.  Non – Overlapping  Generations 

- Euler Integration Method                                                         
with an integration step = 1 

 

Differential Equation 

- Describe continuous systems 

- Rates of Change are defined in terms of                          
other values in the system 

- In order to solve them you must convert them into 
difference equations 

 

ex1.  Used to define most physical laws 

ex2. 

ex3.  Overlapping  Generations 

- Runge-Kutta (4th order) Integration Method                                 
with an integration step < 1 

 

 Analytic   vs.   Numerical Solution 
Analytic Solution 

- Uses calculus to solve, it is exact 

Numerical Solution 

- A numerical solution, never exact 
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 Compiler 
- Changes programs into applications, so that no one can see their machine code by creating stand-alone .exe files.   

- Here the programs are translated in advance so that the source code is permanently converted into machine code (object code), 

resulting in a finished, executable program.     

 Random Walk 
- A term first introduced by Karl Pearson in 1905 to describe the formulation of a trajectory by taking successive random steps 

 Subroutine 

- Fragments of a program that are relatively self-contained.   

- They perform some particular part of the work that has to be done, turned into a separate unit as part of the 
overall design of a larger program.  

-  They enable you to subdivide & thus simplify the task of creating a program.   

- Begins with “SUB” & ends with “END SUB.” 

-   Advantages: shorten & simplify source code, they’re easily available for use by any program, they also need only 
be compiled once, not every time a program is created or revised. 

 Runge-Kutta method 
- Numerous  implicit & explicit iterative methods for approximating the solution of 

ordinary differential equations developed in the early 1900s by German 
mathematicians C. Runge & M.W. Kutta. 

- The most common is the Runge-Kutta 4th Order Method which obtains 4th order accuracy 
by evaluating the derivative four times in each time step: once at the initial point, twice 
at sample midpoints, & once at a sample endpoint; the final integration value is then 
derived based on these derivatives. 

 Lotka-Volterra model & Volterra’s principle 
- The simplest & most widely used model of the prey-predator system 

- Volterra’s Principle : if a prey-predator system is harvested, the proportion of predators will decrease 

 Age-structured population model 
- Principals of Age-Structured Population Modeling:      

1)  Birth process doesn’t begin until the 1st cohort reaches reproductive age 

2)   Reproduction only increases the size of the 1st cohort 

3)   After 1 yr survivors from each cohort are transferred to the next higher one 

4)   Mortality rate  with age  the last cohort eventually disappears from the system 

 Water residence time 

- Residence Time: The average amount of time that a particle spends in a particular system 

-  the average amount of time a water molecule spends in a specific reservoir (atmosphere=9 days vs ocean = 3,200 years) 

 Monod’s equation 
- Monad‟s Hyperbolic Effect of Nutrient Concentration on Growth: was developed to model substrate limitation growth 

- GROWTH = GMAX*NUTLIM = GMAX*[N/(KS + N)] 

- One of the inherent weaknesses of the simple Monad expression is the strict implication of a single limiting nutrient 

- it‟s usually hard to decide a priori what nutrient is most likely to become limiting, nitrogen (N), phosphorus (P), or silicon (Si) 

 Steele’s equation 
- Steele developed an equation to model this photosynthesis-light response, where GROWTH is the 

growth rate, GMAX is the maximum growth rate, I is the incident solar radiation reduced for an 

average albedo of 10%, & Iopt is the optimum radiation with respect to the growth rate (or 

productivity) of the studied phytoplankton assemblage 

- At optimum light GROWTH = GMAX, since GMAX is determined independently of from the 

growth-temperature equation, only the light limitation term (LTLIM) is required.   

- This term is found by normalizing the growth equation…this is done by dividing GROWTH by GMAX 
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Modeling aspects in ecology 

 Terminology 

Population Natality B The number of animals born per unit time (B = b*N) 

Specific Natality Rate b animals born per unit population per unit time (b = B/N) 

Population Size N N0 = Initial Population Size; Nt = population size at time “t”  

Population Mortality M The number of animals died per unit time (M = m*N) 

Specific Mortality Rate m animals died per unit population per unit time (m = M/N) 

Population Intrinsic Growth Rate r This is one of the most powerful tools on the planet   (r = b – m)  

Rate of Change in Population Size rN Average Rate: rN = ∆N/∆t         Instantaneous Rate: rN = dN/dt 
 

Model: a mathematical formulation intended to represent a natural phenomenon or system 

Principal of Hierarchical Organization:  Don‟t have to understand precisely how a system is structured from 

simpler units in order to predict how it will behave (Odum 1971) 
 

 Simple Population Models 

o Discrete Growth Model  

 Assumptions:  Nt = N0*(1 + r)t    where    rN = ∆N/∆t 

      1)  no immigration (entering) or emigration (leaving) that will affect the population size 

      2)  neither abiotic nor biotic factors will limit the population size 

 Process:  

         1)  B = b*N;    Population Natality = (specific natality rate)(population size)         

       2)  M = m*N;   Population Mortality = (specific mortality rate)(population size)  

       3)  r = b – m;    Population intrinsic growth rate = (specific natality rate) – (specific mortality rate) 

o Continuous Growth Model 

 Assumptions: Nt = N0 e
 r t

     where    rN = dN/dt 

1) only one species is present  no interspecific interactions  
       (biotic factors won‟t limit pop. size) 

2) no immigration (entering) or emigration (leaving) that will  

      affect the population size 

3)  environmental resources will always remain unlimited  
      (abiotic factors won‟t limit pop. size) 

 

  J-curve: describes r-selected organisms which have short life histories  (such as invasive species) 

 

 The Role of Modeling in Research 

- Modeling is pretty much analogous to experimental science, since model simulations 

can also be used to test the validity of hypothesis  & to generate new hypotheses.   

- For this reason models can be used to help select an environmental strategy best 

suited as a solution to specific problems 

- Models compliment field work, they DON‟T replace it! 

- You can never build a model that replicates what is actually occurring in nature, 

because nature is too complex to ever be perfectly modeled, the point is to come as 

close as you can to the truth 

- Mathematical models should be used to solve ecological problems, not to create them!   

- Once you have a simple model, you can always make it more complex. 

- The robustness of your model should reflect that of the system you are simulating 

- Modeling technology is so advanced it enables us to simulate extrodinarily complex systems based on finite detail, the 

problem is that field studies aren‟t able to supply the models with the scale of information the model requires. 

- Models are the only scientific means of predicting the future  
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 Classes of Ecological Models 

o Conceptual Model:  a set of scientific hypotheses about a certain biological system or biological process.   

The hypotheses are based on field data or models built for a similar system.   

Essentially it is a verbal description of the system of interest as well as the objectives of the model. 

 

o Diagrammatic Model:  a concise visual representation of the system structure & function, in the form of diagrams.   

                   Known for modeling inputs & outputs of materials (or energy) & the importance of system components 
 

 Forcing Functions (driving variables): inputs to the system from the outside 

 State Variables: dynamic components of the system 

 Transfer Functions: flows of energy & matter between the system components 

 Subsets (Compartments): aggregation of certain components into larger units 

 

o Mathematical Model:  a mathematical formulation intended to represent a natural phenomenon or system.  

 Usually composed of 1 or more differential or difference equations describing the rate of change of one 

or more state variables 
 

 System (state) Variables: sets of numbers representing the system at any time 

 Transfer Functions: flows or interactions between system components 

 Forcing Functions: inputs to the system or factors affecting, but not affected by, system components 

 Parameters: constants in the mathematical expressions 

 

o Computer Model: program which tells the computer to run the mathematical model 

 

o Empirical Model: developed to describe a relationship, without regard for appropriate representation of processes that are  

                                        operating in the real system.  They are built to predict, not explain. 

 

o Mechanistic Model: all important mechanisms that are underlying the system‟s behavior should be incorporated into the model.  

They are built to explain, as well as to predict.   

 

o Deterministic Models: a model that has only one solution, in some cases this means that the model only describes the trend.   

Their most important property is that we can predict the exact value of the variable of interest at any 

future time (given we know the pattern of change up to the present time). 

 

o Stochastic Models: models containing random variables (e.g. random numbers & pseudorandom numbers) 

 Environmental Stochasticity: aperiodic environmental variations & resulting population fluctuations 

 Demographic Stochasticity: describes changes in a population containing a discrete number of members, 

with population changes being caused by succession of individually 

unpredictable births & deaths 
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 Systems Ecology & Modeling 

o Systems Ecology: the approach to ecology which uses tools & methods developed, largely in engineering,             

in order to study complex entities (systems) 

 

 Characteristics of Systems Ecology:  1)  Symbolic (modular) language 

   2)  uses fundamental ecological principals 

   3)  conservation of material, energy, & momentum 

   4)  systems facilitate discussion between people of different disciplines 
o Forrester diagrams: represent material & information flows; more explicit & complex in appearance; hard to 

convert into a series of mathematical models 

 

o Odum diagrams: represent only energy flows; fairly implicit & simple in appearance; relatively easy to turn 

into mathematical expressions 

- What ever goes into a model MUST come put, the model must be balanced 

- Every arrow MUST be described as a term in a differential equation 

- Diagrams are important when working with complex models because they have a visual basis for equation 

building, & different people can just focus on their specialties & then compile their codes to make the model 

 

Odum Diagrams 

Storage 

 

Indicates location of mass or energy storage in a system, as a balance of inflows & outflows 

Used for a variety of state variables, such as water, nutrients, detritus, etc. 

Interaction 

 

Shows interactive intersection of 2 material or energy flows, coupled to produce an outflow 

Consumer 

 

Stores energy & material.  

A symbol for heterotrophic organisms & communities, such as zooplankton & bacteria.  

Energy 

Receptor 

 

Symbol represents the reception of energy such as sound, light, & water waves.  

In this module energy interacts with cycling material producing an energy-activated state 

Used, for example, to describe enzyme-substrate dynamics (Michaelis-Menten reaction). 

 

Producer 

 

Symbol is a combination of a „Consumer unit‟ & „energy receptor‟.  

Energy captured by a cycling receptor unit is passed to self-maintaining unit that also keeps 

the cycling receptor machinery working, & returns necessary materials to it. 

The green plant is an example. 

 

Source 

 

Represents a source of energy or material for the system, such as the sun, temperature, 

fossil fuels, rain, etc.  Used to denote forcing functions. 

 

Heat Sink 

 

Loss of energy or matter 

Work Gate 

(Interaction) 

 

work gate concept is like a traffic light, it stops & goes                                 J = f ( X 1 , X 2) 

 

                                                                                                                        J   = X 1. X 2                                  



 Topics covered in Ecosystem Modeling & Analysis (OCS 4410) 
 

Jennifer Lentz © 2010 General Exam Review Page 6 
 

 Modeling Process 

Success of the model depends on:      1) experience of the modeler         2) availability of data     3) complexity of the model 

 

Process:  1)  Identification of the system 

  2)  Problem definition 

  3)  Critical decision whether or not to use the modeling approach 

  4)  Conceptual Model: defines the objectives of the numerical model (depends on data availability, computing facilities, funding, etc.) 

  5)  Boundaries of the system need to be clearly identified 

  6)  Construct systems diagrams, showing the position of the state variables, mass storage, or energy flow 

  7)  Identify subsystems or compartments 

  8)  Inputs & outputs of mass & energy through all the interfaces 

  9)  External controlling factors (e.g. light, temp., etc)  must be determined to identify forcing functions that influence system dynamics 

10)  Chose the state variables 

11)  Translate into mathematical & computer forms 

12)  Calibration is attempted to find best accordance between computed &observed state variables, by variation of model parameters 

13)  Verification is a test of the internal logic of the model, does the model react as expected?  

       Does the model follow the law of mass conservation? 

14)  Final step is an iterative process, since the conceptual model will ultimately be changed if the model simulations fail to agree 

with real data 

 

 Sample Problems 

The intrinsic growth rate (r) of continuously breeding population of brown rat is 0.11/week.                                                                   

Consider a population of 100 animals, living in an unlimited environment.  What is the expected number of rats after a period of 1 year? 

N1 = N0 (1+r)1   
     = 100*[1+ (0.11/week)(52 weeks/yr)]1 

     = 100*[1+ (5.72/year)]1 

     = 100*[6.72/year]1       

N1 = 672 rats after one year 

 
Between 1700 & 1800 A.D. the number of people on Earth increased from 6*108 to 9*108.                                                                          

What was the average intrinsic growth rate, if we assume that the growth pattern was exponential? 

          

                                                

                

                                  
          /yr 

or 

          N1  =  N0 e
rt 

    9*108  =  (6*108)( e(r)(100))         

         1.5  =  e100r 

 (r)(100)  =  ln(1.5) 

              r  =  0.00405/yr 

 
The size of human population on Earth was approximately 6*109 in 1990.  What is the expected number of people by the end of 

the year 2020, if the human population continues to increase exponentially at an average rate of 0.02/year?                                  

Compare predictions of continuous & discrete versions of the Malthus model. 

Discrete Model:      Nt  = N0 (1+r)t   

          = (6*109)[1+ (0.02/yr)](2020-1990) 

         = (6*109)[1+ (0.02/yr)](30) 

                          = (6*109)[1.02](30) 

                     Nt = 1.0868 *1010 

Continuous Model:      Nt = N0 e
rt 

            = (6*109)( e(0.02/yr)(30))         

                      = (6*109)(e 0.6) 

                                           Nt = 1.093*1010 

 
 

Using Odem symbols construct a simple model of the pond ecosystem, involving one forcing function (nutrients), one producer 

group (phytoplankton), & one consumer group (zooplankton). 
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Equations of Change 

 Terminology 

Carrying Capacity K  

Crowding Factor 
   

 
 

 

Steady State (equilibrium) N* N* = k represents a stable population; while N* = 0 is unstable 

Numerical solution : a numerical approximation, never exact 

Analytic solution: uses calculus to solve, it is exact 

Ecological Stability: If a population persists for a large number of generations, we can say that it is ecologically stable 

 
 Logistic Growth Model 

 

 
S-curve (found with K-selected populations) 

                           

 

 

 

 

 

 

 

 
- Error is cumulative 

- When building an ecosystem model, you should try to accommodate the  fastest growth rate (e.g. bacteria) 
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Computers & Modeling 

 Terminology 

Absolute Machine Language Instructions given to computers in almost incomprehensible hexadecimal codes, it‟s why direct programming is so difficult 

Programming languages Were created in order to write programs using relatively simple instructions 

Assembly language 

(Object Code) 

The programmer‟s equivalent of the computer‟s machine language, because each individual machine language instruction 

can be created in assembly language 

High Level languages 

(Source Code) 

Based on the idea of summarizing many machine language instructions into a single program command (BASIC, 

FORTRAN, PASCAL, C, etc.) 

Application languages (dBASE, LOTUS, etc.) 

Creating computer programs 1) write the program;   2) translate the program‟s source code into object code using a compiler or an assembler; & last 3) 

convert the object code into a finished program using the link-editor 

Interpreting (interpreters) To execute any program, no matter what language its in, it must be translated into machine language.  Interpreters translate 
programs into machine language word by word, while the program is being carried out. Since interpreters are actually 

performing the steps that the original program calls for, the processes is very slow & inefficient, but it is also a flexible 

process.  The slowness is because the time is being taken up performing 2 tasks (translating the program & doing the 
program‟s work).  The inefficiency is because the translation is done over & over again, each time a program step is 

repeated & each time the program is run.  However, interpreting is very flexible since you can change, adjust, or revise a 

program while it is being entered into the computer. 

Compiling (compilers) 

 

Changes programs into applications, so that no one can see their machine code by creating stand-alone .exe files.  Here the 

programs are translated in advance so that the source code is permanently converted into machine code (object code), 

resulting in a finished, executable program.     

Assemblers Compilers for assembly languages 

Structured programming 

(top-down programming) 

 

It breaks the large, hard to read & write, interrupted program listing into functional parts, each of which is developed 

separately, & will later make up the whole program.  It is the most common (& useful) way of overcoming the problems 

of writing & presenting complex programs. Subroutines, Linking, & Libraries are the key components to structured 
programming 

Subroutines 

 

 

 

Fragments of a program that are relatively self-contained.  They perform some particular part of the work that has to be 

done, turned into a separate unit as part of the overall design of a larger program.  They enable you to subdivide & thus 

simplify the task of creating a program.  Begins with “SUB” & ends with “END SUB.” 

  Advantages: shorten & simplify source code, they‟re easily available for use by any program, they also need only be 

compiled once, not every time a program is created or revised. 

Linking (Link editing) 

Main program + Subroutine = Application 

Making all the connections between different pieces of a program to make them work as a whole.  It gathers all the parts of 
object code (e.g.  TEST.OBJ), makes the connections between them, & produces the form that finally is ready to be run 

by the computer.    

Libraries (object library) 

 

Sub1 + Sub2 + Sub3 +…. = Library 

A single disk file that can contain the object code for any number of program subroutines.  After a subroutine is written, 
the program compiles the subroutine into separate, distinct object code files, & then uses a special  

  program (LIB editor) which takes the object code & stores it in a library along with other subroutines. 

QBASIC 

 

 

Simplified version of QuickBASIC programming language, & includes all statements & functions found in earlier versions 
of BASIC.  It allows for the program to be divided into SUBs & FUNCTIONs (not possible with BASIC).  You write the 

program with an advanced screen editor that makes making changes easy.  After the program is run, you will be 

automatically sent back to the editor so make any necessary changes. 

Visual BASIC Released in 1991, it replaced most of the QBASIC  

Remark statements  All statements that begin with ( ' ) are treated as program documentation 

Variables Named memory locations that store data values; type of data used can be specified by one of the following: $, %, &, !, # 

String variables Hold Characters :  A$, TEMP$, etc.  

Numeric variables Hold Numbers :  a, X, TEMP, temp, etc.  

Simple Integers A whole number in the range -32,768 to + 32,768.  It requires 2 bytes of memory 

Long integers A whole number in the range -2,147,483,648 to + 2,147,483,648.  It requires 4 bytes of memory 

Single Precision floating 

point numbers 

A real number of up to 7 digits, plus a decimal point.  The range for single precision numbers is from                     -

3.37E+38 to +3.37E+38.  If a number is too large to be represented in 7 digits the number is expressed in floating point 

notation rounded to 7 digits with an exponent.  It requires 4 bytes of memory. 

Double Precision floating 

point numbers 

A real number of up to 16 digits, plus a decimal point.  The range for double precision numbers is from                       -
1.67D+308 to +1.67D+308.  If a number is too large to be represented in 16 digits it is converted to floating point 

notation.  It requires 8 bytes of memory. 

Arrays An array D(N) is a set of related variables D(1), D(2)…D(N), where D is the name of the array & N is the subscript. The 
subscript indicates the size of an array, which must be defined by DIM statement. 

Binary digit 0 or 1 

Byte 1 byte = 8 bits 
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Computer Programs for Integration of Differential Equations 

 Terminology 

Numerical Integration 

 

A straightforward techniques of calculating an incremental change in a variable & adding it to 

the old value of the variable.  All numerical integration techniques are based on the fact that, 

for small incremental changes in the independent variable (∆x), the difference quotient 

(∆y/∆x) approaches the derivative (dy/dx). 

Finite difference approach With small incremental changes in the independent variable (∆x), the difference quotient (∆y/∆x) 

approaches the derivative (dy/dx) 

Integration Techniques Generally speaking, the more complex integration algorithms yield more stable & numerically 

correct results, but they take longer to run.  The rule of thumb is to use the least complicated 

algorithm that provides stable & correct results 

Euler Computationally simple; fastest for moderate step sizes.                                                                      

Evaluates only one derivative during each time step 

Trapezoidal A bit more accurate than Euler. 

Runge Kutta 2nd order Obtains second order accuracy. Uses a midpoint step derivative to calculate the final 

integration value. 

Runge Kutta 4th order 

 

Obtains fourth order accuracy. This method evaluates the derivative four times in each time 

step: once at the initial point, twice at sample midpoints, & once at sample endpoint.                

The final integration value is then derived based on these derivatives. 

Adaptive Obtains fifth order accuracy. The algorithm automatically 

Runge Kutta 5th order 

 

takes small steps through discontinuities in the input function & large steps through smooth 

functions. A feature of this algorithm is that you can specify its truncation error & minimum 

step size. 

Bulirsh-Stoer Uses rational polynomials to extrapolate a series of substeps to a final estimate. Highly accurate 

for smooth functions. 

Model Errors  

Roundoff error  using single or double precision numbers to approximate infinite real numbers 

Truncation Error E integration algorithm error    

Integration algorithm order k order = number of times a derivative is evaluated in each step 

Constant of propoartionality a  

INTEGRA A BASIC program that performs integration of ordinary differential equations, using either the Euler or Runge-Kutta (4
th
 

order) method.  It was designed to run efficiently with QBasic & VisualBasic programming environments 
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Single Population Models 
Single population An isolated group of organisms of the same species that doesn‟t compete with 

any other population for food, space, or other resources.  Thus the total number 

of individuals (N) in a fixed region of space can only change due to natality (B), 

mortality (M), immigration (i), emigration (e), & harvesting (h) 

Non-overlapping generations No adults surviving to the next generation, use the Euler integration method with 

an integration step = 1 

Difference equation: 

Overlapping generations Adults are surviving to the next generation, use the Runge-Kutta (4th order) 

integration method with an integration step < 1 

Differential equation: 

Model Structure Variation Comes from different assumptions concerning the terns bN, mN, iN, eN, & hN 

Harvesting 

Harvesting Questions 1) What‟s the harvesting rate that gives the maximum sustainable yield (MSY)? 

2) What‟s the relationship between yield & population size? 

   Harvesting a Logistic Population 

      

   Specific harvest rate h     (1/time) 

 Proportional Harvesting 

     

   # of Harvested Animals H (animals/time) 

 Constant Quota 
    

Optimum Harvesting Strategy 

   

 

Age Structure Modeling 

Principals of Age   

    Structure Modeling 

 

1) Birth process doesn‟t begin until the 1st cohort reaches reproductive age 

2) Reproduction only increases the size of the 1st cohort 

3) After 1 yr survivors from each cohort are transferred to the next higher one 

4) Mortality rate  with age  the last cohort eventually disappears from the system 

Cohort Distinct age groups 

First cohort Collective Natality rate – Mortality rate – Survival rate 

Intermediate Cohorts Inflow rate – Mortality rate – Survival rate 

Last Cohort Inflow rate – Mortality rate 

Collective Natality Rate NR NR =  b1N1 + b2N2 + … + bnNn  

Mortality Rate of individual cohorts MRi MRi = m*Ni 

       = (specific mortality rate)(cohort size) 

Survival Rate of individual cohorts SRi SRi = (1 – mi) Ni 

 Inflow rate from the preceding cohort IRi IRi = SR i – 1 = (1-m i – 1) N i – 1 

Logistic Population in a periodically fluctuating environment  (carrying capacity often varies with time due to various changes in the environment) 

  period   p Period of the oscillations in k 

  Frequency   f Frequency of oscillations 

  Angular frequency  ω (radians/time) 

  Oscillating carrying capacity  Oscillating carrying capacity with an angular frequency 

  Scaling constant  C Determines the amplitude of the oscillations 

Max = optimum N  Max rate of ∆  

          found when N = ½ k 

Solve this logistic equation by replacing N with k/2  

 

 

 

This is the maximum harvest rate for a 
      population with stable r & k.   

 

      If, however, r & k are fluctuating in time, 
        then hopt will be lower. 
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Models of Interacting Populations :  Prey-Predator Interaction 

  Population Density Fluctuations in a Prey-Predator System 

- When populations complete their growth (& thus their growth rate averages to 0),                                                      

population density tends to fluctuate above or below the carrying capacity 

- Population density fluctuations may also result from seasonal changes in                                                                                    

environmental factors, which in turn raise & lower the carrying capacity 
 

o  2 - Species Population Interactions (from Odum, 1971) 

  

o  Cyclic Fluctuations in the Population Densities of different Populations (from Odum, 1971) 

- Prey-Predator relationship between the Prey (Snowshoe hare) & the Predator (lynx) populations  

- Snowshoe hare has the same cycle but it peaks ~a year before the lynx 

- the lynx  population peaks every 9-10 years (9.6 av.), peaks are followed by rapid declines 

- Thus as the prey population increases or decreases, so does that of the predator.   

- Periodicity of ~9.6 years 

 

o  Lotka-Volterra Model 

- The simplest & most widely used model of the prey-predator system 

Dynamics of Populations                        

with Exponential Prey Growth 
Self-Limitation of the Prey Pop.             

with Logistic Prey Growth 

 

Differential Equations where… 

              r = intrinsic growth rate of the Prey (1/time) 

              a = rate of Predation (1/predator*time)  

        = exponential growth of the Prey 

              c = conversion rate  
                    (i.e. turning prey into predators (predator/prey) 

            m = specific mortality rate of Predators (1/time) 

  

       Prey (N1) :  
   

  
                

 Predator (N2):  
   

  
              

   

  
       

  

 
          

 

 Stability of the Prey-Predator System 

- The equilibrium solution (N1*, N2*) of the Lotka-Volterra model is attained by finding where the rate of change equals 0. 

 Initial Equation with Exponential prey growth Divide by Resultant Equation Equilibrium Solution 

Prey Population (N1) 
   

 

  
    

      
    

     
           

      
   

   

Predator Population (N2) 
   

 

  
      

    
     

    
         

           
   

    

 

- However, the equilibrium solutions are deterministically unstable,  because after only a small perturbation from the steady 

state the populations of predator & prey retain new equilibrium values 

Unstable Stable 

 

Prey is less than wholly suitable for the 

maintenance of the predator population, so the 

predator species eventually disappears  

2 species undergo considerable fluctuation in numbers, over time the 

fluctuations diminish, eventually reaching an arrangement where the 

mean #s of each species remain more or less stable through time 

 
Predation pressure is too high, so the prey 

species eventually disappears 
 

Following the initial fluctuations, the 2 species enter regular 

cycles of abundance, these cycles can persist indefinitely 
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o Lotka-Volterra Model (continued…)  

                                    
   

  
       

  

 
                 &        

   

  
                  

 
 

 

Parameter Estimation: the link between Data & Models 

- Experimental ecologists criticize Ecosystem Modeling saying it lacks validity 

- The main problem with ecosystem models is that there is incomplete information on the values of the model parameters  

Parameter Estimation: statistical & numerical procedures that are used to obtain reasonable values for model parameters, based on existing 

experimental or field data, parameter estimation provides the link between the data & the model, between statistics & simulation 
  

 Regression Analysis 

- enables the summary & quantification of the strength of the relationship among variables 

- can be used to predict new values of the dependent variables, based on observed relationships 

o Simple Regression 

- performs an ordinary least squares regression using one independent variable 

- it‟s used to estimate the parameters of linear or selective nonlinear models 

- fits a model relating one dependent variable (Y) to one independent variable (X)                                                                                      

by minimizing the SS of the residuals for the fitted line; a & b are Model Parameters 

 Linear Regression (y = a + bx) : easy to handle & has been used to analyze biological data 

 Multiplicative Regression (y = axb): linearization is achieved through logarithmic transformation & estimating model parameters 

 Exponential Regression (y = e a+bx): linearization is achieved through logarithmic transformation & estimating model parameters 

 Reciprocal Regression (1/y = a = bx): linearization is achieved through the reciprocal of the dependent variable  

 Multiple Regression: performs ordinary linear least squares regression using several independent variables 

o Nonlinear Regression 

- produces least squares estimates of parameters in a user-defined non-linear regression model 

- as a result of the common usage of Linear Regression, there has been an overemphasis on linear relationship 

- most ecological relationships are nonlinear & therefore linearization is just an approximation with a limited slope 

- analytical solutions are not available for non-linear regressions, so a search algorithm must be used to determine the 

estimates that minimize the residual SS 

 Marquardt algorithm: it is a compromise between using a straight linearization method & the method of steepest descent 

- the algorithm for nonlinear regression is highly dependent upon the initial parameters, thus a great deal of care should be 

taken in developing the initial estimates 

- to fit data using the model of exponential growth (Nt = N0e
rt) you must enter the function: N*EXP(r*TIME) 

- This model assumes that the independent variable (TIME) contains the units of time over which the growth was measured 
 

o Selecting types of equations to describe relationship among variables 

- Developing Empirical Models describing relationships among variables is an important step in the modeling process 

- The relationship between 2 variables can often be represented by several different functional forms 

 an objective statistical test is needed to find the function that best fits the data 
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 Sensitivity Analysis 

- Sensitivity Analysis provides a measure of the sensitivity of state variables to variations in the model parameters  

- This analysis is usually done by changing the parameter values & observing the effects of one or more state variables of interest 

- The Sensitivity (SXP) of the State Variable (X(n)), to change in the Parameter P(k), is defined as: 

      
- The relative change in parameters is chosen based on our knowledge of the variations to which a certain parameter may be 

subjected in a real system 

o Ex. the modeler estimates that variations within the 95% probability interval may account for 20% of the parameter mean value  

he would probably choose to test the model by changing the parameter value for -20% & +20%. 

- It‟s often necessary to find the sensitivity at 2 or more levels of parameter changes, because the relationship between the parameter 

& the corresponding state variable is rarely linear.   

- This implies that it‟s important to know parameters with the highest possible certainty before the sensitivity analysis is carried out 

 

 Parameter Estimation & Model Calibration 

 Parameter Estimation: Parameters can often be found in the literature in the form of approximate values or intervals before these  

can be used in the model, the model must be calibrated (this is also true of parameters measured in the field) 

 Model Calibration:  A comparison of model results (or model predictions) with measured values.   

- During calibration several sets of parameters are tested & the various model outputs of state variables 

are compared with measured or observed values.   

- The parameter set that gives the best agreement between model predictions & measured data should be selected 

 

 Why Calibration is needed: Characteristics of ecological models & their parameters  

1) most ecological parameters are not known as constraints, as are many chemical & physical parameters, thus literature 

parameters should be used with care 

2) since all ecological models are simplifications of real systems, the model structure doesn‟t account for every detail of the system 

3) by far the most ecological models are lumped models (a single parameter often represents the average value of several species).    

 Problem 1: because each species has its own characteristics, the variation in the species composition requires 

changes in the corresponding model parameters 

 Problem 2: the average of numeric characters of individual species doesn‟t necessarily represent the best parameter 

for description of the community 

- Calibration procedure can help in finding a parameter that accounts best for variations in the species composition to which 

a community may be subjected 

- Calibration can NOT be done randomly when more than a few parameters have been selected. 

 Ex. 10 parameters have to be calibrated, & 10 different values of each parameter should be tested  

      Model must be run 1010 times 

  if the modeler understands the variables & their relations to each other the parameters can be tested in pairs 

while observing the responses of the crucial state variables.   

 The model can also be broken down into a number of sub-models which can be calibrated independently  

 

  



 Topics covered in Ecosystem Modeling & Analysis (OCS 4410) 
 

Jennifer Lentz © 2010 General Exam Review Page 14 
 

Description of Physical Processes in Dynamic Ecosystem Models 

 Physical Forcing Functions 

o Temperature  

- Temperature is one of the most important forcing functions affecting ecological systems 

- The major variation is seasonal, though there is some diurnal & spatial fluctuations  

- Seasonal Patterns can be closely approximated by Sinusoidal Curves,  with simple equations 

to match the time of the max & min temperatures & yearly amplitudes 

- Where TEMP = the mean temperature in the water column (˚C); as the Julian day goes from 1 to 

180, the cosine function changes from +1 to -1, & the temperature oscillates around the mean 

value of 11.5 ˚C 

- Diurnal Variations are often necessary to account for the temperature variations on different 

time scales 

 

o River Flow 

- Productivity of estuaries & coastal marine ecosystems is often determined by 

the availability of riverine nutrients 

- Riverine loads often show significant seasonal changes, which are directly 

coupled to changes in the water discharge 

- Description of the pattern of river flow may be one of the first steps in the 

construction of estuarine & coastal ecosystem models 

- Riverflow may also be represented by a sinusoidal function, even if its 

pattern is fairly complicated 

 

 

o Solar Radiation 

- one of the primary forcing functions in models dealing with 

ecosystem productivity 

- Maximum values of incident solar radiation for clear skies can be 

found in the literature 

- Theoretical maximum of radiation received on a horizontal surface 

is a function of sun angle & can be calculated from the 

appropriate equation 

- Once the maximum radiation for a certain latitude is know, its 

possible to obtain a sinusoidal function that fits the theoretical 

clear-sky maxima & minima at solstices 

- RADNMAX = solar radiation in langleys (ly) per day (1 ly = 1 

cal/cm2);  C = cloud cover (in tenths) 

- Stochastic cloudiness factors often over estimate the radiation & 

must be corrected for extinction by other atmospheric materials 

in addition to cloudiness (this was done by multiplying the 

equation for RAND MAX by 0.7).   

- This resulted in lowering the upper radiation values by 30%. 

 

o Photoperiod 

- Seasonal changes in the photoperiod (= number of hours of daylight) may be described by the following equation:  

- PHOTO = 0.5 – 0.125*COS[2π(day + 10)/365] 

- Photoperiod (PHOTO) varies between 0.625 at the Summer solstice (June 21, 15 hrs of daylight) & 0.375 at the Winter 

solstice (Dec. 21, 9 hrs of daylight) 



 Topics covered in Ecosystem Modeling & Analysis (OCS 4410) 
 

Jennifer Lentz © 2010 General Exam Review Page 15 
 

 

 Other Physical Processes 

o Exponential Decay 

- A variety of physical processes (such as radioactive decay, light absorption in the water column, etc) can be approximated 

by a simple 1st order decay equation 
  

   
      ; in which C = concentration, k = rate constant (1/time) 

- The integral form off this equation is a well-known exponential function 

o Dilution 

- Suppose that a high salinity seawater sample (salinity = S ppt) is kept within a 

constant volume container (volume = V m3)  

- For the purpose of this experiment seawater was washed out of a container by a 

constant inflow of low salinity water (water inflow = Q m3/s; salinity of the 

inflowing water – Sin  ppt), until the equilibrium is reached 

- Using a simple dilution model we can predict the salinity changes within the 

container as a function of time 

 

 

o Behavior of Tracers in Mixed Systems 

- Consider a well mixed lake of constant volume that is being contaminated by 

inflowing toxic substance, which could have harmful effects on the biota if 

threshold concentration is achieved 

- The toxic substance gradually decomposes in the lake water in accordance 

with the first order decay reaction 

- As far as the water inflow & volume of the lake remain constant, the rate of 

change in the concentration within the lake may be approximated by the 

following differential equation (see Non-Conservative Substances) 

- Where C in = concentration in the inflow (mg/m3), C = concentration in the 

lake (mg/m3), Q = water inflow rate (m3/day), V = the volume of the lake 

(m3), & k = the decay constant (1/day) 

 

 

o Diffusion 

- Diffusion is one of the most important physical processes.  At the molecular level, it 

accounts for most of the transport that takes place in water & air 

- Fick’s First Law: the mass transfer in the x direction through a unit surface is 

proportional to the concentration gradient 

- Where Jx = mass flow (g/m2s), = the concentration gradient (g/m4), & Dm (m2/s, or 

more frequently, cm2/s) is the molecular coefficient, the negative sign shows that the 

direction of flux is from the higher concentration to the lower 

- Accumulation = mass in – mass out, where the mass balance of a dispersed phase 

diffusing along the x-coordinate through a volumetric element of fluid 
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Description of Biochemical Processes 

- One of the most difficult steps in the construction of ecosystem models is the mathematical description of biochemical processes  

Problem: How do you combine the influences of several factors that are operating simultaneously into a single mathematical relationship 

- A general approach is to find the maximum rate of a certain biochemical process as a function of only one environmental 

factor, usually temperature 

- Once the maximum rate of change is determined, the influences of remaining factors are expressed as unit-less fractions 

which reduce the maximum 

- Ecosystem Model complexity is often reduced by carrying out all biochemical elements of the model as a single unit                        

(carbon, nitrogen, or energy) 

- This is achieved by using conversion factors (such as those for the conversion of carbon to nitrogen, chlorophyll a to carbon, etc.) 

 Phytoplankton Dynamics 

 

o Temperature-growth relationship (GMAX) 

- Maximum Phytoplankton Growth Rate (GMAX) is often described s an exponential function of temperature 

- Temperature Coefficient (Q10) is usually ~2 

- GMAX for the global equation for phytoplankton growth model above is: GMAX = 0.59*e0.0633*TEMP 
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o Effects of nutrients 

- The hyperbolic effect of nutrient concentration on the growth of microorganisms has long been recognized 

- Increasing concentration at low levels results in a commensurate increase in growth 

- At higher levels, the linear response is shifted & the increment in growth diminishes for unit increases in the nutrient 
 

 Monad’s Hyperbolic Effect of Nutrient Concentration on Growth  

- was developed to model substrate limitation growth. 

- It has predicted growth rate (GROWTH), which is a function of the maximum growth rate (GMAX) 

-  the ambient steady-state nutrient concentration (N) 

- NUTLIM is a unitless fraction reflecting the degree of nutrient limitation 

- characteristic ½ saturation constant (KS) which is defined as the concentration at which the growth rate equals ½ the GMAX 

- The effect of smaller values of KS is to steepen the rate of ascent to GMAX. 

- Problem1: One of the inherent weaknesses of the simple Monad expression is the strict implication of a single limiting nutrient 

- Problem2: its usually hard to decide a priori what nutrient is most likely to become limiting, nitrogen (N), phosphorus (P), or silicon (Si) 

Monad’s Hyperbolic Effect of Nutrient Concentration on Growth 

GROWTH = GMAX*NUTLIM = GMAX*[N/(KS + N)] 
Low ½ Saturation Constant 

 

Great for nutrient poor environments 

High ½ Saturation Constant 

 

Great for nutrient rich environments 

Hyperbolic response of growth to a limiting 

nutrient for 2 different phytoplankton species 

 A-normalized growth rate, B-growth rate.   

Although the species with the lower KS appears 

to be totally dominant in the normalized 

presentation (A), consideration of the actual 

growth rates reveals that the 2nd species grows 

faster at nutrient levels above 3μg-at/I (B) 

 

 Michaelis-Menton adapted Menton‟s model to be used for the kenetics of enzymic reactions, since the limitation results in 

fundamentally different levels of organization.   

- This was then extended to nutrient uptake or growth since both are the result of biochemical reactions.  

 

o Effects of Light 

- The derivation of a single expression for the effect of incident radiation on the daily growth of the entire phytoplankton 

population begins with the analysis of the instantaneous photosynthesis-light response. 

- At low levels photosynthesis increases roughly proportionally to the available light, until saturation begins to flatten the response 

- At higher levels photo-inhibition occurs 

- Steele (1962) developed an equation to model this photosynthesis-

light response, where GROWTH is the growth rate, GMAX is 

the maximum growth rate, I is the incident solar radiation 

reduced for an average albedo of 10%, & Iopt is the optimum 

radiation with respect to the growth rate (or productivity) of the 

studied phytoplankton assemblage 

- At optimum light GROWTH = GMAX, since GMAX is 

determined independently of from the growth-temperature 

equation, only the light limitation term (LTLIM) is required.   

- This term is found by normalizing the growth equation…this is 

done by dividing GROWTH by GMAX. 
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 Zooplankton Dynamics 

- Zooplankton dynamics often require sophisticated mathematical algorithms ino rder to describe the conservation of mass in 

the grazing process, & to track development of juveniles through time. 

- Copepods are the Major herbivore of Narragansett Bay, representing ~95% of the total population  zooplankton can be 

approximated by copepods in a model 
 

o Food ingestion as a function of temperature 

- The daily ration (quantity of food ingested daily) reflects the basic metabolic needs 

of the copepods, as well as many other organisms 

 Van’t Hoff Rule: temperature response follows an exponential relation:   

                           RMAX = RMAX0*e 
(Q10RMX*TEMP)

  

- where RMAX [mgCingested /(mgCZoo*day)] is the maximum ration 

-  RMAX0 is the maximum ration at 0˚C 

- Q10RMX is the temperature rate constant (˚C-1) which is derived 

from the log of the physiological Q10 

- ex. if Q10 = 2.0, Q10RMX = (ln 2.0)/10 = 0.069˚C-1 

 

 

o Regulation of zooplankton growth by the food availability 

- The actual ration of copepods follows a saturation pattern 

with respect to food availability, which can be 

approximated by the rectangular hyperbola of FOODLIM 

- where FOODLIM is the parameter showing the fraction of 

maximum ration which the measure of food limitation 

-  RMAX is the preferred ration 

- R is the actual ration achieved 

-  P is the available food concentration 

-  PT is the threshold food concentration 

- K is the parameter determined experimentally by controlling 

the degree of curvature of the hyperbola 
 

 GRAZING = RMAX*FOODLIM 

the rate at which the adult copepods ingest food (GRAZING) 

can be described as a function of the maximum daily ration 

(RMAX) & the food availability (FOODLIM) 

 

o Respiration 

- Respiration tends to decrease the assimilated ration.   

- ex. in the Narragansett Bay Model, the zooplankton respiration was described as an exponential function of temperature,  

a Q10 value of 2 was chosen:     

- RESP = RESP0*e 0.069*TEMP    
-  where RESP is the respiration rate, RESP0 is the respiration at 0˚C, & TEMP is the temperature 

 

o Hatching 

- Any excess un-respired assimilation may be used for reproduction, i.e. it enters the pool of incubation eggs 

- The time required for eggs to hatch has been determined for a number of estuarine species, & can well be approximated 

by the exponential equation:  H = 12.0*e-0.110*TEMP    where H is the hatching time (days) & TEMP is the temperature 
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Building & Running Ecosystem Models 

 Introduction 

- Lake Jezero is a small accumulation on the Island of Krk in the Northern Adriatic Sea 

- 10 yrs of field studies found that the primary productivity of the lake has increased over time, 

probably as a result of fertilizer input from the drainage area 

- Since the lake is largely used for water supply, its important to know what the main factors are 

controlling the primary productivity since they in turn affect the quality of the drinking water 
  

 Lake Characteristics 

- There is only one larger stream through which drainage waters enter the lake 

- The maximum inflow is during the early spring 

- When the lake reaches 284 cm above sea level it begins to flow out over the barrier 

- During the period of active outflow, the depth at the deepest point is ~9.5 m 

- Dissolved inorganic phosphorous (DIP) is considered the limiting nutrient for the 

phytoplankton productivity in the lake 

- Concentration of DIP in the epilimnion (layer above the thermocline) is low in the 

summer & high (30-60 mgP/m3) in the winter 

- There are 2 dominant groups of phytoplankton in the lake: Diatoms (in the spring) 

& Dinoflagellates (in the late summer) 
 

 Measurement Methods & Techniques 

- Dissolved inorganic phosphorus was determined using a composite reagent of ammonium molybdate 

- Diatom cell counts were converted into phosphorous using literature average cell-values for the dominant species & a 

conversion factor of 1520:1 for wet to phosphorous ratio in the plankton biomass 
 

 Water Balance  

- Measurements of precipitation, evaporation, water consumption, & water level (depth at a fixed place) were performed for 2 

consecutive years to calculate the water balance 

-  Continuous measurements of water level in the lake, carried over dry 

summer periods with no surface inflow, allowed an assessment of daily 

loss due to underground outflow 

o Winter 

- Precipitation & evaporation averages over the winter period were                

1.625*103 m3/day  & 0.925*103 m3/day 

- water supply was 1.75*103 m3/day 

- average runoff was 6.25*103 m3/day 

- while the total outflow was 4.17*103 m3/day 

- resulting in a water surplus of 1.03*103 m3/day   

o Summer 

- 6.74*103 m3/day  were lost due to evaporation, water supply, & total outflow 

- The average total inflow was 4.58*103 m3/day, while the precipitation 

amounted to an additional 1.13*103 m3/day   
 

 A Forced Michaelis-Menton based Model of Phytoplankton Dynamics 

o Model Structure 

- A mathematical model was built linking the primary & secondary productivity to the main ecological factors, & thus 

explain the increasing eutrophication 

- The model is based on the knowledge of lake ecology & growth of phytoplankton in conditions limited to 2 periodic 

(seasonal) factors: light intensity & concentration of DIP 

- Most of the primary production occurs above the thermoclinethe lake has been divided into 2 layers: above (epilimnion)                 

& below (hypolimnion) the thermocline 

- 4 state variables are monitored: DIP, diatoms, dinoflagellates, & zooplankton 

o Model Calibration 

- The model was calibrated using measured flow, nutrient & biomass data.   

- Physiological constrants for phytoplankton & zooplankton (e.g. max growth rates & ½ saturation constants) were adopted  

- Experimentation with different time-scale integrations indicated that integration steps ≤1 day should be able to produce 

stable & accurate results during all simulation runs 


