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Abstract 

This dissertation explores how geographic information systems (GIS) and spatial 

statistics, specifically the techniques used to map, detect, and spatially analyze disease 

epidemics, could be used to advance our understanding of coral reef health.  Given that different 

types of spatial analysis, as well as different parameter settings within each analysis, can produce 

noticeably different results, poor selection or improper use of a given technique would likely 

lead to inaccurate representations of the spatial distribution and false interpretations of the 

disease.  For this reason, I performed a comprehensive review of the following types of 

exploratory spatial data analysis (ESDA): mapping and visualization methods; centrographic and 

distance-based point pattern analyses; spatial kernel density estimates (KDE) using single and 

dual versions of adaptive and fixed-distance KDEs in which the fixed-distance KDEs were 

performed using bandwidths calculated using 12 different estimation methods; SaTScan’s spatial 

scan statistic using both the Bernoulli and Poisson probability models; and last, local and global 

versions of the Moran’s I and Getis-ord G spatial autocorrelation statistics.  Each technique was 

applied to an artificial dataset with known cluster locations in order to determine which methods 

provided the most accurate results.  These results were then used to develop different geospatial 

analytical protocols based on the types of coral data available, noting that the most meaningful 

results would be produced using local spatial statistics to analyze data of diseased colonies and 

colonies from the underlying coral population at risk.  Last, I applied the techniques from one of 

the protocols to data from a 2004 White-Band Disease (WBD) outbreak on a population of 

Acropora palmata corals in the US Virgin Islands.  The results of this work represent the first 

application of geospatial analytical techniques in visualizing the spatial nature of a coral disease 

and provides important information about the epizootiology of this particular outbreak.  

Specifically, the results indicated that WBD prevalence was low with numerous significant 
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disease clusters occurring throughout the study area, suggesting WBD may be caused by a 

ubiquitous stressor.  The material presented in this dissertation will provide researchers with the 

necessary tools and information needed to perform the most accurate geospatial analysis possible 

based on the coral data available.  
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Chapter 1. Introduction 

“Coral reefs are widely considered to be particularly vulnerable to 

changes in ocean temperatures, yet we understand little about the 

broad-scale spatio-temporal patterns that may cause coral mortality 

from bleaching and disease.” – Selig et al. (2010)  

1.1 Approach and Rationale 

Over the last few decades, there has been a substantial decline in the health of coral reefs 

worldwide.  In order to attempt to stabilize our reefs and restore some of what has been lost, we 

must first understand those factors contributing to or directly causing this decline.  Given the 

highly complex nature of the problem, stringent multi-disciplinary analytical techniques are 

needed to better understand the spatial nature of the decline.  This dissertation will attempt to 

advance our understanding of coral reef health by applying geospatial techniques to the problem 

of coral disease, specifically those used to map and spatially analyze epidemics and general 

public health concerns.  

For the purposes of this dissertation “disease” will be defined as any impairment of an 

organism’s vital functions, systems, organs, or cells (Stedman 2006).  In contrast, “health” will 

be defined as an individual’s ability to resist or adapt to various stresses, whether they are 

physical, chemical, biological, social, etc. (Meade and Earickson 2000).  Thus, a coral reef is 

said to be diseased when the animal is no longer able to withstand or adapt to an environmental 

insult causing the coral’s function to decline such that their ability to survive is in jeopardy.  In 

contrast, a healthy reef would be one which was able to successfully adapt to the insult and 

whose survival is not at risk. 
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1.2 Objectives and Hypotheses to be Tested 

The purpose of my doctoral research is to determine whether geospatial analytical 

techniques can be used to advance our understanding of coral epizootiology, and if so, how?  

Specifically, I will be testing the following hypotheses: 

H1:  There is spatial variation in the distribution of coral diseases and geospatial analysis of this 

variation can advance our understanding of coral epizootiology. 

H2:  Geospatial analysis can be used to detect, quantify, statistically analyze, and visualize the 

spatial nature of different coral diseases. 

H3:  The extent of spatial dependence (the clustering or dispersion of corals) estimated by the 

geospatial analysis will be influenced by:  (1) changes in the spatial resolution of the data, 

(2) changes in the spatial parameters used during the analysis, and, (3) the type of 

geospatial analysis being performed. 

H3.1:   Localized clusters will be more readily detectable in high-resolution data when 

compared to the same analysis performed on lower resolution data. 

H3.2:   The spatial parameter settings used by a given type of spatial analysis will influence 

the accuracy of the estimated spatial distribution of the disease. 

H4: The results of different types of geospatial analysis performed on both coral disease data and 

coral population data can be used to test additional hypotheses regarding coral 

epizootiology, such as:   

H4.1:   Diseased corals tend to be spatially clustered in areas in which the density of the 

underlying population is high.  

H4.2:  Diseased corals tend to be clustered in areas in which there is strong spatial 

aggregation (clustering) between all individuals in the underlying population. 
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H4.3: Diseased corals will have a more clustered spatial distribution than non-diseased 

corals. 

H4.4: The areas with the highest prevalence rates will also be found to have statistically 

significant prevalence.  

The findings of all of the above hypotheses have the potential to be quite important as 

they would further our understanding of the etiology of the different coral diseases.  The results 

might also facilitate and guide microbial analyses by showing where targeted microbial testing 

should be performed.  Last, the results of these findings have the potential to help managers 

make decisions on how to protect the reefs by providing geographic information on where the 

reefs are the most stressed and thus at a higher risk of becoming diseased.  

1.3 Synopsis of Chapters 

I began with a thorough literature review of the following three subjects: geospatial 

analysis; epidemiology; and diseases in the marine environment (Chapter 2).  This is followed by 

an in depth review of coral reefs, their declining health, and the types of research techniques 

currently being used to study coral diseases (Chapter 3).  I then provide a brief overview of the 

datasets and general methodology used throughout the remainder of the dissertation (Chapter 4).  

In Chapter 5, I give a detailed explanation of the types of exploratory spatial data analysis 

(ESDA) that were performed; as well as, the specific methods used to perform each analysis.  All 

of the ESDAs mentioned in Chapter 5 were performed on an artificial dataset with known cluster 

locations.  I designed the artificial dataset to have the same spatial resolution and number of 

diseased and non-diseased points of a real coral disease dataset.  The use of an artificial dataset 

enabled me to not only better assess the accuracy of the cluster detection techniques used by each 

of the different types of geospatial analysis; but also, study how spatial scale influenced the 

results of various types of analysis.  Additionally, I was able to use the artificial dataset to 
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calibrate the different types of analysis so that they would perform optimally on the real coral 

disease dataset.  The results of the ESDA of the artificial dataset are given in Chapter 6.  The 

strengths and weaknesses of each spatial program were assessed by comparing the results from 

these analyses to the locations of the pre-defined clusters in the artificial dataset.  Chapter 7 

concludes by laying out specific analytic protocols for the geospatial analysis of different types 

of coral disease data.   One of the recommended protocols was then used in Chapter 8 to examine 

real data from a 2004 outbreak of white-band disease (WBD) in the US Virgin Islands.  The 

material in Chapter 8 was published earlier this year as a report by Lentz et al. (2011) in PLoS 

ONE.  Finally, I close with a summary of the conclusions, implications, and recommendations 

for future research (Chapter 9).  

The material presented in Chapters 4 through 7 is currently being compiled to form a 

series of methods papers designed to serve as a guide for how to use geospatial analysis to study 

coral disease, as well as other types of marine diseases.  I plan to have these manuscripts 

submitted to Geospatial Health later this year.   
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Chapter 2. Geospatial Analysis, Epidemiology, and Marine Diseases  

“While the spatial nature of disease processes is widely acknowledged 

and some epidemic models include representations of space (Cliff 

1995; Holmes 1997), Bolker et al. (1995) emphasize in their review of 

spatial dynamics of infectious diseases that spatial statistics are 

underutilized in epidemiology.  One promising area is the use of 

spatial statistics to link transmission biology with observed spatial 

patterns of disease (e.g., Real et al. 1992).” – Jolles et al. (2002)  

2.1 Geospatial Analysis  

 A Brief Introduction to GIS and Spatial Analysis  2.1.1

Geographic Information Systems (GIS) were developed starting in the early 1960s as 

computer-based applications for processing mapped data (Lo and Yeung 2007).  Today, GIS can 

be used as a cartographic tool to map data, as well as an analytical tool to visually identify or test 

for spatial patterns within the data (Curtis and Leitner 2006).  GIS allows multiple datasets and 

types of spatial data from a specific geographic region to be displayed simultaneously as 

individual layers.  Further the ability of GIS to link spatial data (i.e. latitude and longitude of a 

diseased coral) to attribute data (i.e. name of the coral disease, species of coral, etc.) greatly 

enhances the analytical power of the software, far beyond that of traditional statistics.  As 

technology continues to advance, GIS technology found widespread application, making GIS 

one of the fastest growing computer industries (Lo and Yeung 2007). 

Perhaps some of the most important advances in GIS technology have been those relating 

to spatial analysis.  GIS provides an environment in which a spatial problem can be mapped.  

Insight into this problem may then be attained by mapping other data layers in order to see if 

there is a visible correlation between the problem and the surrounding environment.  Spatial 

analyses provide the researcher with the ability to test these correlations, enabling the researcher 

to identify relationships and have statistical evidence to support the relationships.  Longley et al. 

(2005) described Spatial Analysis as: 
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…the crux of GIS because it includes all the transformations, 

manipulations, and methods that can be applied to geographic data 

to add value to them, to support decisions, and to reveal patterns 

and anomalies that are not immediately obvious – in other words, 

spatial analysis is the process by which we turn raw data into 

useful information, in pursuit of scientific discovery, or more 

effective decision making. 

Spatial analysis can reveal things that might otherwise be invisible 

– it can make what is implicit explicit. 

 Medical Geography and Spatial Epidemiology 2.1.2

As the name implies, the field of Medical Geography combines medical and spatial 

disciplines by using geographical concepts and techniques to study health-related issues  (Meade 

and Earickson 2000; MedicineNet 2004).  The idea is that by mapping the spatial attributes of a 

disease, information about the disease may be revealed (Meade and Earickson 2000; Koch 2005; 

Gao et al. 2008).      

The concept of diseases being influenced through our own interactions with the 

surrounding environment date back more than 2,000 years to the teachings of Hippocrates, a 

Greek physician, who is often referred to as the “Father of medicine” (Meade and Earickson 

2000; Koch 2005).  More recently, the concept was used to map outbreaks and the progression of 

plague around Bari, Italy in 1694 (Koch 2005; Gao et al. 2008).  In 1792, the exact phrase 

“Medical Geography” appeared in the following title of a three-volume work by Leonhard 

Ludwig Finke: “Notes on General Practical Medical Geography…Dealing with  the History of 

Medical Science and Pharmacology of the Indigenous Population of the Varying States of 

Germany” (Koch 2005).   

Perhaps the most well known application of medical geography was by Dr. John Snow 

(1813-1858), a London physician during the mid-late 1800s.  Dr. Snow used a map of the 

locations of cholera deaths in relation to London streets and water pumps to visually defend his 
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theory that cholera was being transmitted through contaminated drinking water (Waller and 

Gotway 2004; Koch 2005; Elliott et al. 2006).  According to legend, shortly after Dr. Snow had 

the handle to the Broad Street pump removed the cholera outbreak in the surrounding area 

sharply declined (Koch 2005; Meade and Earickson 2005).  It is important to note that while Dr. 

Snow’s cholera work did result in his designation as the “father of modern epidemiology,” his 

Broad Street Pump conclusions were criticized both during his time and today (McLeod 2000; 

Waller and Gotway 2004; Koch 2005; Koch and Denike 2009).  While a few of Dr. Snow’s 

contemporaries agreed with his hypothesis, such as Dr. Robert Webb Watkins, the majority of 

the medical community “vilified” the “water-borne hypothesis” (Watkins 2011).  The water-

borne hypothesis was not accepted by medical community until after Dr. Robert Koch had 

identified the water-borne pathogen that caused cholera Vibrio cholerae,  in 1883, which was 29 

years after Dr. Snow had published his map and removed the handle from the Broad Street pump 

(Snow 2002; Koch and Denike 2009; Watkins 2011).  Dr. Snow’s “germ theory” was not 

embraced by the medical community until it had been confirmed through advances in 

microbiology, and it was not until the 1930s-1950s (80-100 years after Snow’s death) that his 

work became “unequivocally” a “classic” in the epidemiological literature (Vandenbroucke 

2001; Koch 2008; Snow 2008).  Much of the modern criticism of Snow’s work has to do with 

the primitiveness of his catographic techniques; however, not only was Dr. Snow was not trained 

as a cartographer, but his work was more than 100 years before the development of rigorous 

spatial statistics, medical symbolization  and mapping aesthetics (McLeod 2000; Koch 2005).    

While, the field of medical geography continued to slowly grow and evolve into the 

1900’s, it was not until the invention of computers and Geographical Information Systems (GIS) 

in the 1970s and early 80s that the field began to take off.  In 1984, the First International 

Medical Geography Symposium (IMGS) was held in Nottingham, England (Joseph 1985).  
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Today medical geography is being used to better understand an increasingly wide variety of 

issues (Earickson 2007; Griffith and Christakos 2007), ranging from the global spread of AIDS 

(Koch 2005; Gao et al. 2008), to the changing spatial dynamics of the polio virus between 1910 

and 1971 (Trevelyan et al. 2005), to the real time interactive modeling of the SARS epidemic in 

China (Boulos 2004) and the rabies virus in the United States (Blanton et al. 2006).  The 

applications of geography-based medical studies appear to be limitless, especially now that 

technological advances have made it possible to not just map a disease surface, but to critically 

analyze and test for spatial relationships as well. 

 “Spatial epidemiology” is a specialized form of Medical Geography that incorporates 

more rigorous spatial, and statistical analyses, to better facilitate epidemiological studies.  The 

creation and widespread use of GIS, coupled with modern advances in computer technology and 

statistical methodology, have enabled the development of this sub-discipline, by both facilitating 

the availability of geographically indexed health data and creating an environment in which to 

display and analyze this data (Gatrell et al. 1996).  The purpose of spatial epidemiology is to first 

describe variations in the spatial distributions of diseases, and second to perform analyses on this 

data, the results of which will hopefully further our understanding of the disease (Ostfeld et al. 

2005; Elliott et al. 2006; Lawson 2006).     

Geospatial technologies are being increasingly utilized in spatial epidemiological 

investigations (Croner et al. 1996; Curtis 1999; Morrison et al. 2004; Lentz et al. 2011).  These 

technologies include methods of data collection, such as: (1) global positioning system (GPS) 

receivers (Dwolatzky et al. 2006);  (2) software designed to manipulate, analyze, and visualize 

large spatial datasets, the most common of which are geographic information system (GIS) and 

remote sensing (RS) approaches (Clarke et al. 1996; Beck et al. 2000); and last,  (3) internet-

based portals for data collection, display, and distribution (Mills et al. 2008).  Briefly stated, 
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these geospatial technologies follow one of two investigative strategies: the identification of 

either spatial patterns or spatial associations.   

When faced with a typical disease dataset, for example, morbidity or mortality cases, a 

variety of techniques are applied to either the individual level or aggregated data to reveal areas 

of positive spatial autocorrelation, more commonly referred to as “hotspots.”  Hotspots are areas 

of high intensity, usually suggesting an elevated presence of disease.  The most revealing hotspot 

analyses use both numerator (cases of disease) and denominator  (all possible individuals) 

populations, so that an elevated rate can be identified, which is not dependent on large 

population numbers (Bithell 1990; Levine and Associates 2004; Waller and Gotway 2004; Smith 

and Bruce 2008; Carlos et al. 2010; Cai et al. 2011).  This concept is explained in greater detail 

when dual kernel density estimates (KDEs) are introduced in section 5.4.2.2 on page 103. 

2.2 Epidemiology 

 Brief Overview of Important Disease Terminology 2.2.1

Before any analysis of coral diseases can be performed, the term “disease” must be 

defined and clarified, as the field of coral pathology is fraught with confusion, misdiagnoses, and 

multiple names for the same syndrome.  Disease is defined as any deviation from an organism’s 

normal, or “healthy,” state (Ben-Haim and Rosenberg 2002; MedlinePlus 2003; Peters 2006; 

Stedman 2006).  This includes impairment of vital functions, organs, or systems, including 

interruptions, cessation, proliferation, or other malfunctions, originating from either abiotic or 

biotic sources, or even combinations of two or more.  These impairments are typically 

manifested through distinguishable signs (externally visible) and/or symptoms (felt internally by 

humans).  “Infectious diseases are characterized both by an identifiable group of signs and the 

presence of the recognized etiologic or causative agent” (Ben-Haim and Rosenberg 2002).   A 

summary of other important disease-related terminology is provided by Table 2.1.   
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Table 2.1  Important Disease Related Terminology 

Contagious Communicable or transmissible by contact with the sick or their fresh secretions or excretions 

Disease An interruption, cessation, or disorder of a body, system, or organ structure or function.  A 

morbid entity ordinarily characterized by two or more of the following criteria: recognized 

etiologic agent(s), identifiable group of signs and symptoms, or consistent anatomic 

alterations 

Endemic Denoting a temporal pattern of disease occurrence in a population in which the disease occurs 

with predictable regularity with only relatively minor fluctuations in its frequency over time 

Epidemic The occurrence in a community or region of cases of an illness, specific health-related 

behavior, or other health-related events clearly in excess of normal expectancy 

Epidemiology The study of the distribution and determinants of health-related states or events in specified 

populations, and the application of this study to control health problems 

Epizootic An outbreak (epidemic) of disease in an animal population 

Epizootiology Epidemiology of disease in animal populations 

Etiology The science and study of the causes of disease and their mode of operation 

Exposure Proximity or contact with a source of a disease agent in such a manner that effective 

transmission of the agent or harmful effects of the agent may occur 

Health The state of the organism when it functions optimally without evidence of disease or 

abnormality 

Incidence The number of specified new events during a specified period in a specified population 

Infectious A disease capable of being transmitted from person to person, with or without actual contact 

Morbid Diseased or pathologic.  The ratio of sick to well people in a community  

Morbidity Diseased state.   

Mortality A fatal outcome, synonymous with “death rate” 

Pandemic Denoting a disease affecting or attacking the population of an extensive region, country, 

continent, global 

Panzootic An epizootic occurring on a global scale 

Pathogen 

Opportunistic 

Pathogen 

Any virus, microorganism, or other substance causing disease.   

An organism that is capable of causing disease only when the host’s resistance is lowered 

Pathognomy Diagnosis by means of a study of the typical symptoms of a disease, or of the subjective 

sensations of a patient 

Pathology The form of medical science and specialty practice concerned with all aspects of disease 

Prevalence The number of cases of a disease existing in a given population at a specific period of time  

Sign Any abnormality indicative of disease, discoverable on examination of the patient; an 

objective indication of disease 

Symptom Any morbid phenomenon or departure from the normal in structure, function, or sensation, 

experienced by the patient & considered to be a subjective indication of disease 

Syndrome Aggregate of symptoms and signs associated with any morbid process, together constituting 

the picture of disease 

Note: the above definitions are taken directly from the 28
th
 Edition of Stedman’s Medical Dictionary (Stedman 2006) 
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 Introduction to Disease Study 2.2.2

At the close of the 19
th

 century, four scientists — Ignaz Semmelweiss, Louis Pasteur, 

Joseph Lister, and Robert Koch — created a benchmark in the study of disease.  The Hungarian 

doctor Ignaz Semmelweiss (1818-1865) made the first breakthrough in disease etiology with his 

discovery of child-bed fever (pherperal fever), identifying the cause as a bacterial infection 

which doctors themselves were transmitting to their patients.  He found that they could easily 

prevent this by simply washing their hands prior to subsequent patient contact (Burnet and White 

1972; Bhopal 2002).  While this may seem like common sense today, the concept of disease 

transport as the result of poor sanitation was a novel one at the time.  Unfortunately for 

Semmelweiss, this idea was too radical for his peers who severely ridiculed him and drove him 

to a mental breakdown and consequent early death (Burnet and White 1972; Bhopal 2002). 

The “germ theory of disease” was posed several years later by Louis Pasteur, “the father 

of modern bacteriology” (Conn 1895), who proposed that diseases were caused by micro-

organisms (Conn 1895; McGill 2000).  Pasteur developed his theory while working at a French 

vineyard where he found that wine souring was being caused by a foreign microbe, which could 

be killed by simply heating (pasteurizing) the wine (Conn 1895; McGill 2000).  A man named  

Joseph Lister (for whom the popular mouthwash, Listerine, was later named) joined Pasteur, and, 

together, they discovered the “true nature of disease” (Conn 1895; Clark 1920; Ford 1928; 

Burnet and White 1972).  In practice, they found that post-surgery infections could be greatly 

reduced by spraying phenol (the active ingredient in Listerine) on an open wound to kill any 

microbes present, and then bandage the wound sealing in the phenol and preventing any new 

microbes from coming into contact with the exposed internal tissue (Clark 1920; Ford 1928; 

Burnet and White 1972; McGill 2000).   
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Through his work on the bacterium that caused anthrax in 1876, Robert Koch became the 

first scientist to prove the microbial disease theory as posed by the three men before him (Burnet 

and White 1972; Bhopal 2002).  Koch went on to write “Koch’s Postulate” (Table 2.2) which set 

forth four rules that must be followed in order to definitively prove disease causation by a 

particular microbe (Burnet and White 1972).   Before his death in 1910, Koch isolated the 

causative bacterial agents of tuberculosis (1882), conjunctivitis (1883), and cholera (1884) 

(Burnet and White 1972; Bhopal 2002; Jones 2004).    

 

Table 2.2  Koch’s Postulate (as defined by Burnet and White 1972; Balter 1998; Bhopal 2002)  

In order to definitively state the cause of a disease as a specific microbe, the following rules must be adhered to: 

1. The microbe must be present in all known cases of the disease, but not present in healthy (non-diseased) organisms 

2. The microbe must be able to be isolated from the diseased organism and grown in pure culture in the lab 

3. Experimental Infection: This lab grown microbe must cause the same disease when instilled in a healthy organism  

4. The microbe must then be able to be isolated from the disease organism and grown in pure culture from the 

experimental infection in the lab 

 

Koch’s Postulate was fully accepted (and still is for many epidemiologists) until only 

recently when a sufficient number of studies were performed indicating that many causative 

agents could be identified with relative certainty but, because of their nature, would never adhere 

to the rules of the Postulate (Balter 1998; Van Gelder 2002).   Raj Bhopal (2002), Professor of  

Public Health and Chair of the Department of Community Health Sciences at the University of 

Edinburgh, Scotland, refers to Koch’s Postulate as “a counsel of perfection and too stringent 

even within the field of microbiology.”  Koch himself found exceptions to rules 1 and 3, in the 

form of asymptomatic carriers (Bhopal 2002).  Despite this, over the past 25 years, marine 

microbiologists have found themselves confronted with a plethora of newly arising coral 

diseases, only a few of which would satisfy Koch’s Postulate (Milius 1998). 
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 Emerging Infectious Diseases (EIDs) 2.2.3

The Earth is currently experiencing an increase in Emerging Infectious Diseases (EIDs).  

These EIDs are targeting plants, wildlife (both terrestrial and marine), domestic animals, and 

humans resulting in an overall threat to biodiversity (Real 1996; Harvell et al. 1999,2002; 

Daszak et al. 2000; Harvell 2004).  While Marine EIDs are rapidly increasing in both incidence 

and severity (Harvell et al. 1999,2002; McCallum et al. 2003; Harvell 2004), humans are not 

directly impacted by them as we are by the interactions among terrestrial EIDs.  Figure 2.1 

illustrates the anthropogenic underpinnings of the causative factors and driving agents associated 

with these EIDs (Daszak et al. 2000; Harvell et al. 2002; Harvell 2004). 

 

Figure 2.1  “The host-parasite ecological continuum (here parasites include viruses and 

parasitic prokaryotes).  Most emerging diseases exist within a host and parasite continuum 

between wildlife, domestic animal, and human populations.  Few diseases affect exclusively any 

one group, and the complex relations between host populations set the scene for disease 

emergence,  Examples of EIDs that overlap these categories are canine distemper (domestic 

animals to wildlife), Lyme disease (wildlife to humans), cat scratch fever (domestic animals to 

humans) and rabies (all three categories).  Arrows denote some of the key factors driving disease 

emergence.”  Note: both the diagram and legend were taken directly from Figure 1 on page 442 

of Daszak et al. 2000. 
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Historically, we only have records of human EIDs, and more rarely domestic animal and 

agricultural EIDs which have a significant, usually economical, adverse effect to humans 

(Daszak et al. 2000; Harvell 2004).  Environmental movements, and advancements in ecologic 

theory, have led scientists to expand their studies to non-economically profitable environmental 

systems; since environmental health is a function of all of Earth’s ecosystems, not merely those 

profitable to humans.  Daszak et al.’s (2000) theory of recent increases in EIDs are the result of 

increased human population levels.  I will add to this that EID incidence is likely further 

increased by overall human ecosystem “modifications,” more aptly described as intentional or 

unintentional anthropogenic environmental degradation (Western 2001).  Table 2.3 gives an 

accounting of the more noticeable human induced environmental degradations. 

Since our transition from nomadic hunter-gathering tribes to agriculturally reliant 

civilizations, humans have modified the environment to better suit their “desires” or “whims.”  

That is, humans have a tendency to act now and deal with the consequences later.  The dramatic 

increase in EID incidence over the past few decades is therefore likely the result of centuries of 

our impulsive and irresponsible actions.  Increased human population levels have caused further 

encroachment on the already substantially depleted remains of wildlife habitats; resulting in 

overall decreased wildlife populations, increased densities in remaining refuges and increased 

competition for space and resources, and overall quality of life, making them ripe for infection 

(Daszak et al. 2000; Harvell 2004).  Removal of the barriers between wildlife, domestic animals, 

and humans, as well as the overall ramifications of human caused species globalization, has 

caused a recent, and seemingly unstoppable, increase in the “spill-over” and “spill-back” 

transmission of diseases between these three categories (Daszak et al. 2000; Harvell 2004; Power 

and Mitchell 2004) 
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Table 2.3 Anthropogenically Induced Environmental Changes  

Characteristics of intentionally modified ecosystems 

High natural resource extraction 

Short food chains 

Food web simplification 

Habitat homogeneity 

Landscape homogeneity 

Heavy use of herbicides, pesticides, & insecticides 

Large importation of non-solar energy  

Large importation of nutrient supplements 

Convergent soil characteristics 

Modified hydrological cycles 

Reduced biotic & physical disturbance regimes 

Global mobility of people, goods, & services 

Ecosystem side-effects of human activity 

Habitat & species loss (including conservation areas) 

Truncated ecological gradients 

Reduced ecotones (transition zone between ecosystems) 

Low alpha diversity 

Loss of soil fauna 

Simplified predator–prey, herbivore–carnivore, & host–parasite networks 

Low internal regulation of ecosystems due to loss of keystone agents 

Side effects of fertilizers, pesticides, insecticides, & herbicides 

Invasive nonindigenous species, especially weeds & pests 

Proliferation of resistant strains of organism 

New & virile infectious diseases 

Genetic loss of wild & domestic species 

Overharvesting of renewable natural resources 

High soil surface exposure & elevated albedo 

Accelerated erosion 

Nutrient leaching & eutrophication 

Pollution from domestic & commercial wastes 

Ecological impact of toxins & carcinogenic emissions 

Atmospheric & water pollution 

Global changes in lithosphere, hydrosphere, atmosphere, & climate 

Some ecological consequences of human activity on ecosystem processes 

Ecosystem structure 

Loss of biodiversity 

Structural asymmetry & downsizing of communities 

Loss of keystone species and functional groups 

Ecosystem processes 

Low internal regulation 

High nutrient turnover  

High resilience 

Low resistance  

Low variability 

Low adaptability 

Ecosystem functions 

High porosity of nutrients & sediments 

Loss of productivity 

Loss of reflectance 

Global processes 

Modified biogeochemical cycles 

Atmospheric change 

Accelerated climatic change 

Note: the above table was adapted from Tables 1, 2, and 3 on pages 5459 and 5461 of Western 2001 
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2.3 Diseases and the Marine Environment 

 Challenges Associated with Studying the Marine Environment 2.3.1

Perhaps one of the most important aspects in understanding the instigation of diseases in 

general, lies in understanding the crucial relationship between microorganisms and their hosts, 

since any deviation from their unique equilibrium relationship can result in the host taking on a 

diseased state (Dubos 1961; Rosenberg and Ben-Haim 2002).  While terrestrial based diseases 

have been studied for centuries, marine diseases have remained for the most part an enigma to 

scientists (McCallum et al. 2003,2004).  This is for a number of reasons, the first of which is that 

until the end of the 20
th

 century the marine environment, outside of the intertidal zone, was for 

the most part off limits to researchers since it was largely inaccessible until the invention of 

SCUBA (Miloslavich et al. 2010; Dubinsky and Stambler 2011).  The second, and perhaps more 

important, is that oceanic systems are much more complex than terrestrial systems, which makes 

pathogen transmission extremely difficult to detect, track, and study (McCallum et al. 

2003,2004; Harvell et al. 2004).  Because the area of marine studies is so recent, there is little 

baseline data in the field, which makes the recognition of altered states of health rather difficult 

as in many cases recorded states of normalcy do not exist (Harvell et al. 1999,2002,2004).   

 Historical Overview of Marine Diseases 2.3.2

Since the industrial revolution, there has been substantial decline in ecosystem health 

around the world (Revelle et al. 1965; Hardin 1968).  In general, this decline has been caused 

directly or indirectly by anthropogenic stressors; such as: increased pollution levels, habitat 

manipulation and destruction; global warming; and general human over-population (Revelle and 

Suess 1957; Revelle et al. 1965; Hardin 1968; SCEP 1970; Hardin 1976; Kellogg 1987).  The 

ramifications of our increasingly mechanized world became rapidly apparent and severe, 

resulting in the initial inklings of environmentalism (Carson 1962; Leopold 1966; Hardin 1968).   
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In the 1960s and early 1970s the environmental movement exploded onto the scene with 

the eye opening accounting of how humans had caused the widespread use of DDT such that 

virtually no part of the world had been left untouched (Carson 1962).  This concept was further 

supported by Aldo Leopold’s accountings of the changes and overall deterioration of nature that 

he witnessed during his lifetime, saying more than once that when one has had a beautiful 

interaction with nature it is best never to return to that spot, because it will undoubtedly be 

depleted and otherwise humanized (Leopold 1966).   

 It was during this same time period that SCUBA became more widely available to the 

public, allowing scientists to stay down longer and explore deeper realms of the ocean (Bascom 

and Revelle 1953; Dill and Shumway 1954; Kidson et al. 1962; Wood 1963; Fager et al. 1966; 

Roberts 1968; Richardson 1999).  As this was a relatively new field, much of the initial 

observations in the ocean were descriptive in nature (Carson 1941,1951,1955; Doukan 1957; 

Thomson 1957; Link 1959; Goggin 1960; Schmid 1965; Macintyre 1967).  It was during one of 

these descriptive dives that marine scientist Antonius (1973) reported the first incidence of coral 

disease.  Over the past 30 years since that initial sighting, a plethora of coral diseases have been 

detected and studied (Gardner et al. 2003; Nowak 2004; Wapnick et al. 2004). 

 The Importance of Marine Health and Estimated Declines 2.3.3

Outbreaks of disease are known to modify the existing structure, function, and stability of 

marine ecosystems (Raymundo 2005).  Of these, infectious disease outbreaks have been shown 

to be the most menacing, as they have the ability to dramatically decrease biodiversity through 

rapid population declines, local extirpations, and eventually species extinctions (Harvell et al. 

2002).  The severity of diseases is further confounded by the physical and chemical nature of the 

marine environment which not only enables, but may promote, the spread of marine pathogens 

(McCallum et al. 2003).  Recent studies suggest that the macro-scale currents and lack of barriers 
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in the ocean enable long-distance dispersal of pathogens (McCallum et al. 2003).  Currents, 

eddies, and strong winds most likely influence the directional migration of pathogens, in addition 

to further enhancing their rates of spread (McCallum et al. 2003).  In fact, marine systems have 

been found to be capable of propagule dispersal rates more than two orders of magnitude greater 

than found on land (Kinlan and Gaines 2003; McCallum et al. 2003).   

Despite the inherent problems and weaknesses with the study of marine diseases, they are 

especially important to study since the ocean accounts for 70.8% (Trujillo and Thurman 2008) of 

the Earth’s surface , and tends to be a good indicator of environmental change—both natural and 

anthropogenically induced.  These include increased sea levels, air and sea temperatures, nutrient 

levels, sedimentation, pollutants, and many others.  Bruno et al. (2003) report that over the past 

20 years there has been such a noticeable increase in both the prevalence and severity of marine 

diseases that a variety of keystone species are being significantly and adversely affected.  In 

addition, commercially valuable, endangered, habitat forming foundation species are undergoing 

extreme reductions in both diversity and abundance as a direct result of these marine disease 

epizootics (Harvell et al. 1999; Bruno et al. 2003).  Eventually putting the entire ecosystem at 

risk of wide scale change, such as that of their community structure, resulting most likely in 

instabilities in crucial ecosystem processes (Harvell et al. 2002; Bruno et al. 2003).  Harvell et al. 

(2002) go on to describe infectious diseases as “strong biotic forces” due to their ability to cause 

cataclysmic population declines and species extirpations and extinctions.  Of the many types of 

marine diseases it is especially important to study coral diseases as corals provide crucial habitat 

and geologic structure to coastal environments.  Diseases tend to play a huge role in determining 

the structure of coral reef communities due to their rapid destructive abilities (Bythell and 

Sheppard 1993; Richmond 1993; Aronson and Precht 1997; Cooney et al. 2002). 
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Disease incidences in the marine realm have increased over the last few decades (Harvell 

et al. 1999; Ginsburg 2000; Aronson and Precht 2001; Daszak et al. 2001; Harvell et al. 2001; 

Precht et al. 2002), with a marked acceleration of reported instances from the 1900’s to the 

present (Richardson 1998; Green and Bruckner 2000).  While scientists lack baseline data and an 

overall epidemiological history for the ocean, recent studies are showing that the increased 

reports of disease occurrence is novel, and not purely an artifact of increased awareness and 

study of the marine environment (Harvell et al. 1999,2002,2004).  This consensus was made 

after a period of global ecological monitoring of the oceans, in conjunction with paleontological 

studies which confirmed that while there were diseases in the past which affected the marine 

environment, the incidence, severity, and rates of spread, have risen dramatically in recent years 

and are not comparable to any historical outbreaks (Harvell et al. 1999; Aronson and Precht 

2001; Porter et al. 2001; Bruno et al. 2003).   

What is perhaps the most alarming about this increase is the degenerative, and in some 

cases eradicating, effects disease has had on various commercially valuable, foundation, habitat 

forming, keystone, as well as already threatened or endangered marine species (Harvell et al. 

1999; Green and Bruckner 2000; Bruno et al. 2003).  As of 2000, as many as thirty-four mass 

mortalities had been reported in a wide variety of marine groups, each affecting more than 10% 

of the infected population (Harvell et al. 1999; Green and Bruckner 2000).  Perhaps the most 

severe, or at least most studied and publicized, of these outbreaks has been within corals.  

Many scientists believe that corals may serve as an indicator group for the global marine 

ecosystem decline (Green and Bruckner 2000; Barber et al. 2001).  The decline, and in some 

areas, collapse, of coral reefs around the world is best marked by five crucial biological 

responses within the reef system: (1) the absence of large marine animals, such as turtles, sharks, 

and groupers which had once been commonplace there (Jackson et al. 2001; Pandolfi et al. 2003, 
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2005); (2) a general decrease in the diversity of fish and invertebrates present on the reefs 

(Jackson et al. 2001; Pandolfi et al. 2003,2005); (3) mass bleaching events (Goreau et al. 1998; 

Barber et al. 2001; Harvell et al. 2001); (4) macroalgal overgrowth and overall community phase 

shifts (Goreau et al. 1998; Aronson and Precht 2001; Barber et al. 2001; Precht et al. 2002); and 

(5) emerging coral diseases (Goreau et al. 1998; Barber et al. 2001).  

 Potential Causes of Declining Marine Health 2.3.4

Right now there is a debate among the scientific community as to the cause of the 

increased marine disease incidence.  Are the pathogens becoming more virulent than in the past?  

Are the immune systems of marine organisms weakening and becoming more vulnerable to 

infection? Are pathogens expanding out from their previously known ranges, and if so is this 

range expansion human-facilitated?  Or lastly, have human activities stressed marine organisms 

so much that their susceptibility to infection has increased or prompted the outbreaks of these 

diseases (Harvell et al. 1999; Green and Bruckner 2000; Hayes et al. 2001; Harvell et al. 2002; 

Bruno et al. 2003)?  The most likely answer is a combination of all of the above factors and 

stressors, resulting in the overall increased susceptibility of marine organisms to infection. 

The timing of these outbreaks correlates with the present exponential human population 

growth causing many scientists to more closely examine the anthropogenic role in these 

outbreaks.  Global increase in human populations along the coasts, has no doubt, caused the 

current increase of sewage discharge into the oceans (O'Shea and Field 1992; Harvell et al. 

1999).  In addition, sewage is making its way into the oceans via a number of different methods, 

both direct (e.g. storm water overflow, and direct dumping from cruise ships, fishing vessels, 

commercial ships, etc.) and indirect (underground seepage from septic tanks and injection wells).  

For this reason, it is not surprising that scientists are calling for increased management of water 

quality, specifically designed to limit pollution (Bruno et al. 2003).   
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With the oceans covering so much of the world’s surface, why is it that disease incidence 

has not been more diffused over this vast area?  The answer likely lies in the physical properties 

of the marine environment which appears to both promote pathogen survival (Colwell and Huq 

2001; McCallum et al. 2003), and facilitate the potential for long-distance dispersal, which 

results in increased rates of pathogenic spread (McCallum et al. 2003).  There is also a 

fundamental difference in how terrestrial and marine systems handle the physics behind dispersal 

of organisms and the degree of connectivity within the given ecosystem.  This suggests that the 

underlying physics of the marine realm may facilitate much faster rates of pathogenic spread 

than possible on land (Kinlan and Gaines 2003; McCallum et al. 2003).  Kinlan and Gaines 

(2003) used both direct and genetic methods to compare the differences in propagule dispersion 

for both land and water.  Their results indicated that marine propagule dispersal occurred at rates 

as high as two orders of magnitude greater than the fastest terrestrial mode of dispersion, which 

they identified to be the dispersal of terrestrial plants.  McCallum et al. (2003) explains this by 

the lack of dispersal barriers present in the marine realm thus facilitating more rapid pathogenic 

transport than on land.     

There are undoubtedly a plethora of factors (natural or anthropogenic in origin) 

contributing to the current rise in marine EIDs, which are reacting in complex and possibly even 

synergistic ways that science is just starting to discover (Harvell et al. 1999,2004; Green and 

Bruckner 2000).  To facilitate the study there are several research avenues which need to be 

pursued, among which understanding the role of climate change is perhaps most crucial, to the 

marine environment (Bruno et al. 2003).  While scientists are just beginning to understand both 

climate change and its marine ramifications, there is evidence that temperature increase, sea level 

rise, changes in ocean circulation, and decreased salinity will directly impact the health of the 

marine ecosystems (Harvell et al. 2002; Bruno et al. 2003).   
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Chapter 3. Coral Reefs and Their Declining Health 

“Corals form the structural and biological framework of some of the most 

diverse, productive and economically important marine ecosystems in the 

world.  There is growing evidence that these ecosystems are now being 

degraded at an alarming rate as a result of the synergistic impacts of over-

fishing, anthropogenically derived increases in carbon dioxide levels, 

warming of sea surface temperatures, eutrophication, sedimentation, and 

pollution (Lesser 2004).” – Lesser et al. (2007) 

 

3.1 Introduction to Coral Reefs 

In addition to being one of the oldest ecosystems in the world, dating back hundreds of 

millions of years (Wood 1998; Hoegh-Guldberg 1999; Pandolfi 2011), coral reefs are also one of 

the most complex, productive, and biologically diverse ecosystems in the world (Hoegh-

Guldberg 1999; Lesser 2011; Weil and Rogers 2011).  Additionally, coral reefs have provided 

“millions of people with food, building materials, protection from storms, recreation, and social 

stability over thousands of years, and more recently, income, active pharmacological 

compounds, and other benefits” (Weil and Rogers 2011).  However, anthropogenic changes to 

earth’s natural climatic, terrestrial, and oceanic systems have caused such a dramatic decline in 

reef health, that these “iconic” ecosystems are now not only considered threatened worldwide, 

but recent studies are showing that tropical coral reefs may disappear within the next 50 years 

(Anthony et al. 2008; Silverman et al. 2009; Veron et al. 2009; Erez et al. 2011; Hoegh-Guldberg 

2011). 

3.2 Coral Reef Ecology and Biology 

The term “coral reef” is unique in that it refers to both a geological structure and a 

biological community (Buddemeier et al. 2004).  The geological structure of the reef is 

essentially the limestone (calcium carbonate) framework, which is made by the biologic 

organisms (namely corals and calcareous algae) which secrete the calcareous material as part of 

their growth.  The biological use of the term “coral” refers to the coral animals (Phylum 
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Cnidaria) that make up the living part of the reef (Buddemeier et al. 2004; Harrison 2011).  The 

term “reef,” in a biological context, generally refers to the whole ecosystem, from the corals to 

the fish and countless other organisms, which are associated with reefs.  The above terminology 

is important, as there is often much confusion as to what is being referred to when the use of the 

terms are not qualified appropriately.   

 Reef Formation and Zonation 3.2.1

Limestone is a sedimentary rock composed of the minerals calcite and aragonite, which 

are different forms of calcium carbonate (CaCO3; Ohde and Hossain 2004).  Corals create their 

calcareous skeletons by secreting calcium (Ca
2+

) and bicarbonate (HCO3
-
) ions through the outer 

layer of tissue on the underside of the polyps (Gattuso et al. 1999; Ohde and Hossain 2004).  

These secreted ions form a matrix of CaCO3, providing an additional layer to the underlying 

skeletal structure (Ohde and Hossain 2004).  The calcification process is very energy demanding 

because the ions must be propelled out against a gradient (Gattuso et al. 1999).  The majority of 

the energy needed for this process (up to 95%) is provided by the Zooxanthellae that live within 

the coral tissue (Gattuso et al. 1999; Hoegh-Guldberg 1999).  Zooxanthellae are unicellular, 

photosynthetic dinoflagellates (algae) that have a symbiotic relationship with their coral host 

(Hoegh-Guldberg 1999).  Because this process is fueled by the energy provided by the 

photosynthetic algae, it is often referred to as “light-enhanced calcification” (Vandermeulen et al. 

1972; Chalker and Taylor 1975).  The pH levels are an important component to the skeleton 

formation, because the skeleton dissolves in acidic solutions (low pH).  For this reason, corals 

must maintain a high pH concentration (Gattuso et al. 1999).  These levels are the highest during 

the day (pH ≈ 9.3), dropping to a pH of roughly 8.0 at night (Kleypas et al. 1999a; Kleypas et al. 

1999b; Ohde and Hossain 2004).   
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The geomorphology and subsequent zonation of shallow-water reefs is primarily shaped 

by the combination of water-temperature, light penetration, and prevailing wave energy (Bak 

1983; Charuchinda and Hylleberg 1984; Hubbard 1997).  These factors do not usually have a 

uniform distribution, but rather change with depth, distance from shore, and type of shore habitat 

(sandy, rocky, mangroves, etc).  Over time, these differences cause different zones within the 

reef to develop (Figure 3.1).  Eventually organisms will begin to dominate the reef zone in 

which they are best suited, thus creating biological reef zonation (Figure 3.1).   

When hurricanes are added into the mix, different combinations of the intensity and 

frequency of both waves and storms results in the formation of the following three overall types 

of Caribbean reefs: Pavement reefs, which have low ambient wave conditions and high hurricane 

frequencies; Algal Ridge reefs, which have high prevailing wave conditions and high hurricane 

frequencies; and Acropora  palmata dominated reefs (Figure 3.1A), which have high wave 

energies and experience hurricanes less frequently than the previous two reef types (Hubbard 

1997; Hubbard et al. 2008).  Pavement and Algal Ridge reefs have few, if any, corals, due in 

large part to the high hurricane frequency.  Hurricanes and strong storms are known to cause the 

branches of A. palmata to break off.  High wave energy prevents nutrients, sediments, pollution, 

and potentially other stressors from accumulating on and around the reef, thus lowering the stress 

levels of the coral.  If the coral is relatively healthy, then the high wave energy will also help to 

encourage coral recruitment and the reef will rebuild and recover. 

 Caribbean Reef Distribution 3.2.2

Hermatypic (“stony” or “reef-building” corals), coral reefs are generally characterized as 

“steno-tolerant” ecosystems, because there is a relatively narrow (“steno”) range of 

environmental conditions under which they are known survive, much less thrive (Kleypas et al. 

1999a).  Specifically, hermatypic corals are usually limited to “warm, clear, shallow, and fully 
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Figure 3.1 Reef Zonation. (A) A side-view of some of the common types of reef zones found in the Caribbean.  (B) A close-up of 

the different types of wave energy generally found on either side of the reef crest.   Note: this figure was adapted from the diagram on 

the following website: http://media.beautifuloceans.com/course1/pic/1.1_CoralReef_Zonation_800pix.jpg. 

http://media.beautifuloceans.com/course1/pic/1.1_CoralReef_Zonation_800pix.jpg
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saline waters” (Kleypas et al. 1999a).  Given this limited range of environmental conditions, the 

geographic distribution of most coral reefs is usually confined to tropical and subtropical, 

shallow waters located within 30 latitudinal degrees north or south of the equator (Birkeland 

1988; Dubinsky and Falkowski 2011; Hoegh-Guldberg 2011; Lesser 2011; Pandolfi 2011).  The 

equatorial region has high angle of solar irradiance year round, resulting in warm waters with 

little temporal fluctuation throughout the year (Miloslavich et al. 2010).  For example, the 

surface waters in the Caribbean generally range from 22°C – 29°C (Miloslavich et al. 2010), 

with the exception of the Gulf of Mexico basin which is considerably cooler in the winter 

months.   

Corals are generally found in this zone because hermatypic corals have a relatively 

narrow thermal range and historically temperature has proven to be one of the primary 

environmental factors controlling not only their geographic distribution, but their very survival 

as well (Dana 1843; Mayor 1914,1915; Vaughan 1918,1919; Vaughan and Wells 1943; Walker 

et al. 1982; Glynn and D'Croz 1990; Kleypas et al. 1999a; Lirman et al. 2011).  While thermal 

tolerance is known to vary by species and location (Walker et al. 1982; Berkelmans and Willis 

1999; Marshall and Baird 2000), the minimal and maximal critical thermal stress thresholds of 

most corals are defined as 16°C (60.8°F) and 36°C (96.8°F), by Mayor (1915) and Kinsman 

(1964), respectively.  However, most  hermatypic corals live within a thermal range of 25°C – 

29°C (Vaughan and Wells 1943; Kinsman 1964; Jaap 1979; Walker et al. 1982), with an optimal 

growth occurring between 26ºC – 27°C (Clausen and Roth 1975; Jokiel and Coles 1977; 

Marshall and Clode 2004; Lirman et al. 2011).   

In addition to temperature, there are other physical and environmental properties that 

influence the geographic distribution of corals; such as: salinity, light, nutrients, sediment, depth, 

and various hydrodynamic factors (Sheppard et al. 2009).  For example, coral reefs are more 
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likely to occur on the eastern side, rather than western side of continents within their equatorial 

zone.  Large scale oceanic gyres, driven by wind systems and the earth’s rotation, produce 

conditions unfavorable to reef production on western sides of continents or eastern sides of ocean 

basins (Walton Smith 1971).  This results from local wind-driven upwelling of cold nutrient-rich 

water from below as well as equatorial flow of colder water from high latitudes (i.e. eastern 

boundary currents; Walton Smith 1971).   Regions with upwellings are not conducive to reef 

formation, as the waters are too cold, nutrient rich, and have poor water clarity; consequently any 

reefs that do form in these areas are generally “less extensive and more fragmentary” (Sheppard 

et al. 2009).  Conversely, the warm, western boundary currents found on the eastern side of 

continents generally provides a much more favorable environment for corals.   

The presence of warm, surface currents also play an important role in the reproductive 

success and geographic distribution of coral reefs by transporting coral planulae (larvae) 

throughout the region.  The velocity of the currents may also help reduce the impact of different 

stressors.  For example, fast currents can lessen the impact of bleaching by moving the warm 

water along and preventing prolonged exposure (Grimsditch and Salm 2005).  Fast currents also 

help reduce algal stress by inhibiting the settlement of macroalgae, thus allowing coral recruits to 

settle and grow (Grimsditch and Salm 2005).  Last, currents generated by breaking waves are 

also important to reefs because they  transport essential nutrients throughout the system, as well 

as, moving  waste products out of the area (Hubbard 1997). 

 Phylogenic and Taxonomic Classification of Corals  3.2.3

 According to Woese et al.’s (1990) three-domain phylogenic classification system, corals 

are classified as eukaryotes (Domain “Eucarya”)  because they have cells with a nucleus 

containing their genetic material (Sumich and Morrissey 2004).  Within this domain, corals are 

classified as animals (Kingdom Animalia) according to Whittaker’s kingdom-based taxonomic 
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classification system (Whittaker 1959,1969; Whittaker and Margulis 1978), because they are 

multicellular eukaryotic organisms whose cells lack cell walls and have some degree of muscle-

contracting and nerve-conducting capabilities (Sumich and Morrissey 2004).  Within this 

kingdom, corals are classified as animals that belong to the Phylum Cnidaria (see Figure 3.2).  

This phylum is an exclusively aquatic group of carnivorous organisms that have radially 

symmetrical, simple body structures, in which the mouth is the only opening and it is surrounded 

by nematocyst-lined tentacles that aid in capturing their prey (Sumich and Morrissey 2004).  

Cnidarians generally exist as either free-swimming medusa (jellyfish) or sessile polyps attached 

to the benthos (sea anemones and corals).  Corals are differentiated from other cnidarians, 

because their life-cycle is dominated by the polypoid generation as opposed to jellyfish whose 

life-cycles are dominated by the medusoid generation (Sumich and Morrissey 2004).   

Corals are classified as either Anthozoans or Hydrozoans (Class Anthozoa or Hydrozoa, 

respectively), based on their morphologic form (polypoid and/or medusoid) and the anatomic 

structure of their gastervascular cavity and gastrodermis (see Figure 3.2).  Hermatypic (reef-

building) corals are generally considered to be Scleractinian anthozoans (Order Scleractinia), 

characterized by their hard, calcareous exoskeleton and photosynthetic endosymbionts 

(zooxanthellae).  Other corals that are known contribute to the reef-building process are usually 

not considered to be hermatypic because they either lack zooxanthellae or are not Scleractinians. 

 Basic Anatomy of Hermatypic Corals  3.2.4

Corals are an especially interesting marine animal as there is very little about them that is 

animal-like, but rather the organisms can be better understood by thinking of them as plants.  

Corals are colonial animals made up of thousands of connected polyps (Figure 3.3B, C), in 

which each polyp represents an individual coral animal (Figure 3.3C, D).  Hermatypic coral 

polyps have a soft, sea anemone-like body that is protected by the corallite (Figure 3.3D).  The
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 Kingdom Animalia  
   

 Phylum Cnidaria  
  

         

 Class Anthozoa       Class Hydrozoa  
            

 Exclusively polypoid life-cycles 
Partitioned gastrovascular cavity that can be radially divided by septa 
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Non-partitioned gastrovascular cavity 

Gastrodermis has neither gametes nor cnidocytes 
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Solitary or Colonial Polyps with 6-fold symmetry (or multiples of 6) 

Ahermatypic (non-reefbuilding) & Hermatypic (reef-building) Corals                                
Well developed skeletons 

“Soft Corals” 

Colonial polyps with 8-fold symmetry 

Ahermatypic corals that lack a rigid, permanent skeleton 

 “Hydrocorals” 

Solitary or Colonial Polyps 

Hard, Calcareous Skeletom    

          

Order  Antipatharia  Order Scleractinia     Order Alcyonacea     Order Anthoathecata 
           

Black Corals  Stony Corals or Hard Corals                 

 
  Sea Fan             Black  

   Black                Coral      
  Corals                Tree 

    

                   

 Suborder  

Alcyoniina 

Suborder 

Calcaxonia 

Suborder 

Holaxonia 

Suborder 

Scleraxonia 

Suborder  

Stolonifera 
 

Suborder 

Capitata 

Suborder 

Filifera 
                

 True Soft Corals Gorgonians Telestaceans  Family  

Milleporidae 

Family  

Stylasteridae  

 
xeniids, neptheids, 

leather corals,                

colt corals, etc. 

        
Sea Fans   Sea Feathers   Horny Corals 

 
Stolon Corals, 

Organ-pipe coral 

 

      

 Fire Corals Lace Corals 

Boulder, Encrusting 

 & Mounding Corals 

Leaf, Plate, & 

Sheet Corals 

  

     
Branching     Blade  

 
 Bottle-Brush         Wire  
 Black Corals        Coral Fleshy Corals 

Branching & 
Pillar Corals  

Flower &      
Cup Corals  

Solitary or 

Colonial polyps. 

 
Often occur in 

depths > 30m  

skeleton made of calcium carbonate  

&/or gorgonin (a complex protein) 

 
 

 

Turbulent 

Water 
 

considered  a 
“fouling” 

organism 

Nematocysts 

(stinging cells)              
can cause a             

Painful, Burning 

sensation 

Nematocysts  

are less  
powerful  

causing only 

minor irritation Colonial, ahermatypic 

corals with internal 

orangic skeletons, 

Found in Deep Water 

Predominantly, Hermatypic corals with external 

skeletons made of calcium carbonate, 

Photosynthetic symbiotic algae (zooxanthellae) 

Requiring Warm, well-lit, Shallow Water (< 50m) 

     

 

       

Figure 3.2 Taxonomic classifications, characteristics, and  depictions of common types of corals.  Note: the above taxonomic 

classifications and characteristics were based on the following sources: Lutz (1986); Fautin & Romano (1997,2000); Fautin et al. 

(2000); Humann and Deloach (2002); Romano and Cairns (2002); Rose (2009); Sheppard et al. (2009); OBIS (2011).  The 

illustrations are from Humann & Deloach’s (2002) “Reef Coral Identification: Florida Caribbean Bahamas” book. 

Brain Corals 
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Figure 3.3  Coral reefs and the basic anatomy of hermatypic corals.  (A) An example of a 

coral reef ecological community.  (B) This is a close-up of the Montastrea cavernosa coral 

shown in A, representing an individual coral colony.  (C) A close-up of M. cavernosa polyps 

depicting the difference between the visual appearance of an open polyp (right) and a closed 

polyp (left).  (D) A cross-sectional diagram depicting the major anatomical elements associated 

with scleractinian, hermatypic corals.  (E) Cross-sectional diagram of the coral   holobiont, 

depicting the some common microbial inhabitants in relation to the anatomy of a scleractinian 

polyp.  The microbes are not drawn to scale.   Note:  the photograph shown in A (and B) was 

taken in Puerto Rico by NOAA’s Biogeography Team, Center for Coastal Monitoring 

(http://www8.nos.noaa.gov/biogeo_public/habitat_photos.aspx).  The photograph of the M. 

cavernosa polyps shown in C was taken by Steve Vollmer’s lab, and is available online at: 

http://nuweb5.neu.edu/vollmerlabwp/category/potential-students/.  The diagram shown in D was 

adapted from Geoff Kelly’s figure in Veron (2000), and the diagram shown in E was adapted 

from Figure 1, on page 356 of Rosenberg et al. (2007b). 

http://www8.nos.noaa.gov/biogeo_public/habitat_photos.aspx
http://nuweb5.neu.edu/vollmerlabwp/category/potential-students/
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term “corallite” refers to the calcareous skeleton of an individual scleractinian polyp (James 

1974).   

The coral grows upwards and outwards by secreting calcium-carbonate (CaCO3) at its 

base, this occurs at the interface between the polyp (green) and the underlying skeleton (white)  

depicted in Figure 3.3D.  The rate of coral growth varies according to the type and health of the 

coral.  Branching corals, such as the two types of Acropora corals depicted in the Fore Reef 

Zone of Figure 3.1A, may grow as much as 15cm/year; while massive corals, such as the upper 

row of scleractinian corals depicted in Figure 3.2, may only grow 1-2cm/year (Spalding and 

Bunting 2004).  On average (excluding the rapidly growing reef-building corals) it takes a 

thousand or more years for a coral reef (Figure 3.3A) to grow one meter (~3.28 feet); the 

individual coral colonies (Figure 3.3B) generally grow an order of magnitude faster than this 

adding the same height in roughly one hundred years (Spalding and Bunting 2004).  However, 

when corals become stressed corals, they must focus their energy on surviving rather than 

growth or reproduction (Szmant and Gassman 1990; Lirman 2000; Fine et al. 2001; Rosenberg 

and Barash 2005). 

 The “Holobiont” 3.2.5

The “coral holobiont” is defined as the entire community of living organisms that make 

up a healthy coral head (Rohwer et al. 2002; Rosenberg et al. 2007a,b; Siboni et al. 2008; Bourne  

et al. 2009).     The holobiont contains both macro- and micro-organisms from all three domains, 

as well as viruses which don’t really fall under any of the three domains (Figure 3.4).  The 

primary Eukarotic members of the holobiont (Figure 3.3E) are the coral animal itself, and the 

microscopic endosymbiotic dino-flagellates (algae) commonly referred to as “zooxanthellae”.  

Other Eukarotic members of the coral holobiont include alveolates, basal protists, chromists, 

endolithic algae, flagellates, and fungi.  The micro-organismal members from the Bacteria 
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domain include cyanobacteria and various types of endolithic, endosymbiotic, ectosymbiotic, 

and heterotrophic bacteria (Rosenberg et al. 2007a,b; Bourne et al. 2009). The members from the 

Archea domain are still being studied, but so far appear to predominantly come from the 

Crenarchaeota and/or Euryarchaeota phyla (Kellogg 2004; Wegley et al. 2004; Rosenberg et al. 

2007a).   In order to understand the role that the members from each of these domains plays in 

the susceptibility to diseases (including bleaching), the role they play within the complex 

structure of the holobiont (Figures 3.3E and 3.4) must first be examined.   

Corals are colonial animals made up of thousands of connected polyps (Figure 3.3B, C).  

Lining the interior of the polyp are a layer of microscopic algae, zooxanthellae (Figure 3.3D 

inset and 3.3E), which give corals their plant-like  nature (Buddemeier et al. 2004).  The 

zooxanthellae and the coral polyps have a symbiotic relationship in which the algae use CO2 as 

fuel to perform photosynthesis in order to produce food.  The algae pass this food onto the corals 

in exchange for carbon dioxide, nutrients, and shelter.  To give an idea of the size difference 

between the coral host and its endosymbionts, one coral polyp has ~1-5 million zooxanthellae 

per cm
2
 (Spalding and Bunting 2004). 

The bacterial members of the holobiont are usually found within the surface mucus layer 

(SML), the coral tissue, and the porous calcium carbonate (CaCO3) skeleton formed by their 

Cnidarian host  (Figure 3.3E; Harvell et al. 2007; Rosenberg et al. 2007a,b).  In some cases 

bacteria appear to be associated with disease resistance by doing one (or a combination) of the 

following: producing antibiotics; taking up space; and/or forming antagonistic relationships with 

other bacteria in order to prevent one, potentially pathogenic, bacterial community from taking 

over the mucosal zone (Riegl et al. 2009; Rypien et al. 2010).  However, there are numerous 

other studies suggesting bacteria are what is causing the disease (Kushmaro et al. 1996-1998, 

2001; Smith et al. 1996; Nagelkerken et al. 1997; Geiser et al. 1998; Richardson et al. 1998a,b; 
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Figure 3.4   Some of the organisms (both macro- and micro-) known to make up the coral Holobiont (Shashar et al. 1997; Baker 

2003; Kellogg 2004; Wegley et al. 2004; Wilson et al. 2005; Beman et al. 2007; Rosenberg et al. 2007a; Siboni et al. 2008; Lins-de-

Barros et al. 2010; OBIS 2011).  Note: the virus and endolithic algae images were taken from Figure 1 on page 147 of Rosenberg et al. 

(2007b); all other images are from NOAA’s Coral Reef Information System (CoRIS) website (www.coris.noaa.gov/). 

Viruses 

Prokaryotes 
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membrane-bound organelles, and are usually unicellular. 

Eukaryotes 
Organisms that have cells with a nucleus (or nuclear envelope) containing genetic material. 

Most eukaryotic cells also contain other types of membrane-bound organelles 

(such as mitochondria, chloroplasts, etc.), &  can be unicellular or multicellular. 
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Ritchie and Smith 1998; Smith et al. 1998; Ben-Haim and Rosenberg 2002; Patterson et al. 2002; 

Ben-Haim et al. 2003a,b; Denner et al. 2003; Sutherland et al. 2004,2010-2011; Harvel et al. 

2007).  One study shows that the coral’s skeleton may protect the holobiont by absorbing strong 

ultraviolet radiation, that is found to be detrimental to most other marine life (Reef et al. 2009). 

 The Archaea microbial members tend to be associated with the SML of the polyp, where 

they are thought to contribute to the nitrogen cycle by acting as a sink for the excess ammonium 

the ends up being trapped within the mucus layer during the nitrification and denitrification 

processes (Siboni et al. 2008).  However, there is still so little know about the Archea that it is 

unclear whether or not they might play a role in disease susceptibility (Siboni et al. 2008). 

Over the last decade, numerous microbial studies have greatly enhanced the scientific 

understanding of the coral holobiont (Rohwer et al. 2001,2002; Kellogg 2004; Wegley et al. 

2004; Bourne and Munn 2005; Johnston and Rohwer 2007; Rosenberg et al. 2007b; Chimetto et 

al. 2008; Siboni et al. 2008; Ainsworth and Hoegh-Guldberg 2009; Reis et al. 2009; Lins-de-

Barros et al. 2010).  Much of this work has been focused on studying how the holobiont deals 

with stress (Reshef et al. 2006; Thurber et al. 2009).  Progress in this area has been slow, 

especially given the complex nature of the relationships between and among the flora and fauna 

associated with the coral holobiont (Ainsworth and Hoegh-Guldberg 2009).  This is further 

complicated by the lack of baseline data on healthy coral holobionts (Klaus et al. 2005; Lins-de-

Barros et al. 2010).  In fact, the very concept of the “holobiont” with regard to corals is still 

relatively new, prior to this past decade most microbial studies of corals were focused more on 

the relationship between the zooxanthellae and the coral host, than on identifying and/or 

understanding the roles of the other microbes present (Lins-de-Barros et al. 2010).   

Increasingly studies are showing that corals worldwide are experiencing stress from a 

variety of sources. Consequently, studies of apparently healthy coral holobionts, may actually be 
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characterizing the inhabitants and functions of holobionts under low-grade stress (Casas et al. 

2004; Bourne and Munn 2005; Lins-de-Barros et al. 2010);  thus, making it difficult to 

differentiate between healthy and diseased corals based on the presence or absence of specific 

microbes and whether or not the presence of these microbes is beneficial to the well-being of the 

coral.   Without a firm understanding of the microbiota of healthy corals it has proven difficult, 

and in many cases impossible, to confirm whether or not the bacteria (and other microbes) 

associated with coral lesions were responsible for causing the lesions (Bourne et al. 2009).  

Despite the numerous difficulties associated with determining and confirming disease etiology at 

the microbial level, most scientists agree with the following statement by Rene Dubos (1961): 

In general, the adaptive relationships between microorganisms and 

their hosts is effective only for the precise circumstances under 

which adaptation evolved...  Any departure from this normal state 

is liable to upset the equilibrium and bring about a state of disease. 

 

3.3 Coral Health and Disease 

 Significance of Reef Health 3.3.1

As indicated by their nickname “canaries of the sea” (Gustavson et al. 2000), coral reefs 

are an indicator of larger marine ecosystem health.    Because of the small, sensitive, ecological 

niche in which they live (Kleypas et al. 1999a), minute changes in their habitat can trigger large 

scale community change within the reef.  Thus, when the reefs are thriving the oceans seem to be 

in harmonious balance; however, when reef ecosystems begin to crash, as they are now, it is a 

sign of larger environmental problems, which left unchecked, will have a “domino” effect on the 

surrounding marine environment.  

Despite only occupying one tenth of one percent of the world’s oceans, 284,300km
2
 

(Spalding et al. 2001; Downs et al. 2005; Hoegh-Guldberg 2005), coral reefs contribute 

substantially to not only the marine environment, but the biological communities, physical and 
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atmospheric processes of the entire globe (Hoegh-Guldberg 1999).  Ecologically, coral reefs are 

one of the most specious and diverse ecosystems in the world, supporting more than one million 

marine species (Hoegh-Guldberg 1999).  Coral reefs provide essential habitat, shelter, and 

breeding grounds for the world’s greatest biodiversity (Wood 1998; Donia and Hamann 2003; 

Bellwood and Meyer 2009).   

Physically, coral reefs serve as the first line of defense against shoreline erosion (Wood 

1998; Hoegh-Guldberg 1999).  In the past the reefs protected the coasts from waves, floods, and 

tropical storms (Wood 1998; Hoegh-Guldberg 1999; Lirman 1999).  Today, the coastal 

protection provided by the reefs is crucial as sea levels rise, severe weather increases in 

frequency, and overall climatic extremes intensify due to human induced climate change (global 

warming). 

Chemically, oceans are a sink for carbon dioxide, helping to draw the greenhouse gases 

out of the atmosphere (Hoegh-Guldberg 1999).  Reefs are also currently being explored by 

pharmacologists in search of miracle drugs, such as AZT derived from a Caribbean reef sponge 

and used to treat HIV patients, cancer treatments, antiviral medications, and painkillers 

(Bruckner 2002b; Mescher and Sturgess 2009).  

Economically coral reefs support a large tourism industry.  Caribbean reefs are a multi-

billion dollar tourism industry (Hoegh-Guldberg 1999).  One study estimated the total annual 

revenue from reef related tourism in Australia to be on the order of 4.3 billion Australian dollars; 

a stark contrast to the 360 million Australian dollars generated by commercial and recreational 

fishing (Butler 2005).  Both the act of fishing and the depletion in fish stocks are stressful to reef 

communities, the Australian government recently made more than one-third of the Great Barrier 

Reef Marine Park “no take” zones (Evans and Russ 2004; Butler 2005); as a healthy reef proved 

to be FAR more profitable than a fledgling fishing industry.  Buddemeier et al.’s  (2004) study 
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estimated the annual net economic benefits of the world’s coral reefs at more than 30 billion 

dollars. 

Currently more than 10% of the world’s population live within 100km of coral reefs 

(Donner and Potere 2007).  The vast majority of these people live in undeveloped or developing 

countries, and rely heavily on the reefs for both their food and livelihood (Hoegh-Guldberg 

1999; Andrefouet et al. 2005; Donner and Potere 2007).  Seventy-five percent of these people 

live in the poorest developing countries (Donner and Potere 2007).  For most island nations, 

fisheries and aquaculture are the primary food source, since the land is too scarce to rely on 

agriculture (Hoegh-Guldberg 1999; Donner and Potere 2007).  In many parts of the South Pacific 

subsistence fishing accounts for 80% of the catch; unfortunately, subsistence fishing is not 

included in national fishing statistics (Donner and Potere 2007), resulting in overestimations of 

the fisheries and ultimately their collapse.   If coral reefs collapse, not only will these people not 

be able to feed and support themselves, but the resultant shoreline erosion coupled with 

increasing water levels will leave many of these people homeless. 

 Historical Overview of Coral Diseases 3.3.2

As marine ecology is a relatively new discipline, baseline data on coral health, and 

disease distribution and abundance is sparse, especially when compared to terrestrial studies 

(Harvell et al. 1999).  Many critics dismiss the notion of an anthropogenic link between 

increased disease incidence, abundance, and severity on corals, arguing that diseases have likely 

always around, we just were not looking for them before.  While it is likely that corals have 

battled diseases in the past, evidence is increasingly showing that various stressors, both natural 

and anthropogenic in origin, are acting synergistically resulting in wide spread decimations of 

coral populations and in the severe cases species extirpation (Bruno et al. 2003; Sutherland et al. 

2004; Wapnick et al. 2004).  As the reports of new diseases, outbreaks, and population 
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decimations continue to rise, scientists are increasingly turning to paleontologic studies for 

insight on how unique these occurrences were on the geologic scale, so as to attempt to narrow 

down the realm of possible causes for the destruction (Porter and Meier 1992; Grigg 1994; 

Hughes 1994; Jackson 1997,2001; Cooney et al. 2002; Garrison et al. 2003). 

Unfortunately, this question cannot easily be resolved, as there are disagreements within 

the paleontologic community on the issue.  Pandolfi et al. (2003) reports that analysis of records 

extending back thousands of years shows that “degradation of coral reef ecosystems began 

centuries ago” and that “all reefs were substantially degraded long before outbreaks of coral 

disease and bleaching.”  While other scientists do not disagree with Pandolfi’s assessment that 

the reefs were severely degraded hundreds of years before we began to study them.  Instead, 

these scientists believe that recent coral declines are substantially more severe and wide spread, 

even if their presence is not novel (Hubbard et al. 1994; Bruckner and Bruckner 1998; Epstein et 

al. 1998; Harvell et al. 1999; Kim et al. 2000a,b; Aronson and Precht 2001; Porter et al. 2001; 

Rosenberg and Ben-Haim 2002; Bruno et al. 2003; Garrison et al. 2003; Sutherland et al. 2004; 

Wapnick et al. 2004); further arguing that this recent increase in both incidence and severity is 

not an artifact of increased attention (Epstein et al. 1998; Goreau et al. 1998; Harvell et al. 1999)  

.  The one thing both sides seem to agree on is that reef ecosystems as we know them, will not 

survive without immediate action to prevent further anthropogenic stress and exploitation 

(Pandolfi et al. 2003). 

While coral diseases are occurring globally, their incidence appears to be the most severe 

in the Caribbean (Porter and Meier 1992; Grigg 1994; Hubbard et al. 1994; Hughes 1994; 

Jackson 1997,2001; Cooney et al. 2002; Bruno et al. 2003; Sutherland et al. 2004; Wapnick et al. 

2004; Aronson and Precht 2006).  Over the past few decades reports show that disease is 

responsible for a roughly 80% loss in Caribbean coral cover (Gardner et al. 2003; Nowak 2004; 
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Wapnick et al. 2004).  The Acropora coral genus appears to have been the hardest hit by disease, 

with A. palmata showing  a 90-95% decline across the Caribbean (Garrison et al. 2003) and A. 

cervicornis populations collapsing across the region (Wapnick et al. 2004).  These extraordinary 

declines are of extreme importance to the health of the ecosystem, as until recently they served 

as the primary reef building corals for the area, responsible for developing reef framework 

(Lirman 1999), stabilizing the substrate and decreasing the impact of wave induces coastal 

erosion, providing crucial habitat to diverse reef fish populations (Lirman 1999), as well as other 

important reef organisms (Precht et al. 2002).  As a result of these drastic declines the two 

Acropora species have been the first corals to ever be listed as Threatened Species under the 

Endangered Species Act (Precht et al. 2002; NMFS 2006).  In the absence of the acroporids, 

Gorgonia and Montastraea species have become especially important to Caribbean systems in 

their attempts to maintain the reef framework and prevent the onslaught of macroalgae (Aronson 

and Precht 2001; Kim and Harvell 2002; Bruno et al. 2003).   

 Types of Coral Disease 3.3.3

As was mentioned in the previous chapters, the term “disease” refers to any deviation 

from the healthy state of an organism (Dorland 2000; Singleton and Sainsbury 2006; Stedman 

2006).  In contrast, “health” is defined as an individual’s ability to resist or adapt to various 

stresses, whether they are physical, chemical, biological, social, etc. (Meade and Earickson 

2000).  Thus, a coral would be considered diseased when the holobiont is no longer able to 

withstand or adapt to an environmental insult causing the coral’s function to decline such that 

their ability to survive is in jeopardy.  Whereas, a healthy coral would be one which was able to 

successfully adapt to the insult and whose survival is not at risk. 
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 Infectious vs. Noninfectious Diseases 3.3.3.1

As stated by Work et al. (2008), “disease is the outcome of complex interactions between 

the host, causative agent(s), and the environment.”  Resistance to disease would therefore be the 

“natural or acquired ability” of the coral holobiont to “maintain its immunity to or to resist the 

effects of” antagonistic biotic and/or abiotic agents (Madl 2005).  Conditions, in which the etiolic 

agent is a living (biotic) organism, are usually referred to as “infectious” because the disease-

causing agent can be passed from the infected host to a new host, either with or without direct 

contact.   Conversely, noninfectious diseases refer conditions in which the etiologic agent is not 

transmittable, often because the disease is the result of non-living (abiotic), environmental 

stressors.  However, determining whether the initial diseased state was caused by an infectious or 

noninfectious agent can be difficult, as “biotic and abiotic diseases are often closely related” 

(Sutherland et al. 2004).  For example, given that corals have evolved to thrive in a relatively 

narrow range of environmental conditions, its stands to reason that subtle changes in the 

surrounding environment have the potential to stress the coral and decrease its ability to resist 

disease (Dubos 1961; Rosenberg and Ben-Haim 2002; Sutherland et al. 2004; Williams and 

Miller 2005; Lesser et al. 2007).  In addition to reducing disease resistance, abiotic stressors are 

also known to promote the growth, virulence, and/or transmission rate of biotic pathogens, and 

cause resident microbes to become pathogenic (Kushmaro et al. 1996,1998; Toren et al. 1998; 

Ben-Haim et al. 1999; Alker et al. 2001; Banin et al. 2001a,b; Israely et al. 2001; Kuta and 

Richardson 2002; Sutherland et al. 2004). 

 Coral Bleaching 3.3.3.2

“Although coral biologists have not considered bleaching as a 

disease (Peters 1984; Hayes and Goreau 1998; Richardson 1998), 

coral bleaching precisely fits the definition of disease – a process 

resulting in tissue damage or alteration of function, producing 

visible physiological or microscopic symptoms.”                                         

– Rosenberg and Ben-Haim (2002) 
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Thermal Bleaching 

 Corals generally thrive in waters very close (within 1 to 2˚C) to their narrow thermal 

range (Glynn 1993; Berkelmans and Willis 1999; Harvell et al. 2001; Coles and Brown 2003; 

Fabricius 2006; Harley et al. 2006; Marshall and Schuttenberg 2006; Veron et al. 2009), when 

this thermal limit is exceeded for long periods of time the coral becomes stressed.  When water 

temperatures exceed the thermal limit of the coral, the zooxanthellae function poorly.  The loss 

of the zooxanthellae as a result of thermal stress is referred to as “thermal bleaching,” or more 

commonly as “coral bleaching” (Hubbard 1997; Crabbe 2008).  The zooxanthellae have pigment 

associated with them, when they are expelled only the clear tissue overlaying the white 

calcareous skeleton of the coral remains (Figure 3.5) – giving it the appearance of being 

“bleached” (Kleppel et al. 1989; Lang et al. 1992; Glynn 1993; Kushmaro et al. 1997; McCreedy 

et al. 2006; Lesser 2007).  Initially, it was unclear whether the zooxanthellae were leaving the 

coral or the corals were forcing the zooxanthellae to leave (Strychar et al. 2004a,b); however, 

more recent evidence indicates that the corals are expelling their zooxanthellae in order to go 

into a hybernative-like state until the temperatures return to levels within the coral’s optimal 

range (Crabbe 2008).  If the temperature returns to normal relatively quickly (around a week) the 

coral will allow healthy zooxanthellae in the water column to re-inhabit their surface layer, 

allowing the coral to recover (Lang et al. 1992).  However, prolonged thermal stress (lasting 

several months), usually in the form of increased or decreased sea surface temperatures (SSTs), 

or extreme SSTs, can result in coral mortality (Lang et al. 1992).  

Conflicting Theories over the “Primary” Cause of Coral Bleaching 

There is currently a debate within the scientific community as to whether or not bacteria 

can also cause corals to bleach.  Eugene Rosenberg and his colleagues argue that specific 

bacteria (Vibrio coralliilyticus and V. shiloi) can cause corals (specifically Oculina patagonica,  
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Figure 3.5  Diagram of thermal coral bleaching.  Note: this diagram was adapted from Figure 

1.3 on page 7 of Marshall and Schuttenberg (2006). 
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which is an invasive encrusting coral found in the Mediterranian) to become bleached 

(Kushmaro et al. 1996-1998,2001; Ben-Haim and Rosenberg 2002; Rosenberg and Ben-Haim 

2002; Ben-Haim et al. 2003a,b; Rosenberg and Falkovitz 2004; Rosenberg et al. 2007a-b,2009b; 

Rosenberg and Kushmaro 2011).  However, Ove Hoegh-Guldberg and his colleagues disagree, 

suggesting instead that abiotic, environmental stressors are the primary cause of the coral 

bleaching, and that if there is in fact any bacterial involvement having to do with the disease that 

is an opportunistic infection made possible by the weakened defenses of the coral due to the 

bleaching (Ainsworth et al. 2007a-b,2008a; Leggat et al. 2007a; Lesser et al. 2007; Ainsworth 

and Hoegh-Guldberg 2008,2009; Stat et al. 2009).   

Rosenberg and his colleagues first started to promote their theory of “Bacterial 

Bleaching” in the late 1990s following two experiments by (Kushmaro et al. 1996,1998).  They 

brought samples from the bleached lesion (the boundary between the bleached and non-bleached 

tissue) of Oculina patagonica back to their lab, where they were able to isolate Vibrio shiloi and 

obtain a pure culture of it.  Koch’s postulates were considered met when V. shiloi was re-isolated 

from the tissues of the experimentally bleached corals.  They performed this, and variations of 

this experiment successfully on the same coral species between 1994 and 2002 (Kushmaro et al. 

1996-1998,2001), during which time they identified Hermodice carun-culata, a marine 

fireworm, as the vector for keeping the pathogen alive during the winter months and then re-

infecting the corals with V. shiloi the following summer.   

They then used the results of these studies to develop their “Bacterial Bleaching 

Hypothesis” in which they proposed that bacteria was the primary driver of mass coral bleaching 

over the past 2 decades, rather than Climate Change (Rosenberg and Ben-Haim 2002).  Then in 

2003 they found that they were no longer able to isolate V. shiloi from the bleached corals, from 

which they concluded that the corals must have developed resistance to this bacterial pathogen 
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and adapted to the increased sea temperatures (Koren and Rosenberg 2006; Reshef et al. 2006; 

Rosenberg and Kushmaro 2011).  This led them to come up with the “Coral Probiotic 

Hypothesis” which suggests that the coral holobiont is formed through the selection of the 

microbes best suited for a given coral host based on the current environmental conditions 

(Reshef et al. 2006; Rosenberg et al. 2007a,b).  They then generalized this theory into the 

“Hologenome Theory of Evolution” (Rosenberg et al. 2007b,2009a,2010; Zilber-Rosenberg and 

Rosenberg 2008; Rosenberg and Zilber-Rosenberg 2011).  

Hoegh-Guldberg and his colleagues were not necessarily opposed to the concept of coral 

bleaching being caused primarily by bacteria, but rather they questioned the research methods 

used.  For example, Rosenberg’s group performed all their experiments exclusively in aquaria 

(Ainsworth et al. 2008a; Ainsworth and Hoegh-Guldberg 2009), rather than in the ocean; which 

meant that there was no way of knowing whether or not their results were legitimate or just 

artifacts of the artificial environment in which the studies were performed.  Additionally, all of 

their experiments were done on a coral known to be invasive to the area, and not representative 

of natural coral reef systems (Rosenberg and Falkovitz 2004). 

In order to determine whether or not the results of Rosenberg’s group were accurate, 

Hoegh-Guldberg and his colleagues performed a similar experiment on the same type of coral 

from the same geographic region; only this time they took their samples from corals in their 

natural environment during the annual summer bleaching period (Ainsworth et al. 2008a).  

Hoegh-Guldberg’s group also took the sampling design one step further, by not only taking core 

samples from healthy O. Patagonia tissue and the bleaching lesion, but they also took a sampled 

of tissue that was entirely bleached (Ainsworth et al. 2008a).  When they analyzed their results 

they found that while there was the same extent of bleaching as there had been in previous years, 

they found no signs of V. shiloi present in any of their samples, nor did they find the penetration 
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of and proliferation within the coral tissues by any type of Vibrio, or any other bacteria 

(Ainsworth et al. 2008a).  In fact, they found no bacterial communities to be associated with any 

of their samples (bleached and non-bleached).  The only microbial communities they 

encountered were endolithic communities found to occur under the bleached tissue as well as the 

pre-bleached and non-bleached coral tissues.  During coral bleaching they found that there was a 

phase shift from the endolithic dominance, to cyanobacterial dominated groups just prior to 

bleaching, and then a final shift towards green algae during bleaching.  From this Hoegh-

Guldberg’s group concluded that both the results and bleaching-related hypotheses of 

Rosenberg’s group were incorrect (Leggat et al. 2007b; Ainsworth et al. 2008a).    

Hoegh-Guldberg and his associates did suggest that the shift in microbial communities 

during bleaching might indicate that the coral was attempting to stabilize itself during a 

bleaching event, or it could also indicate potential sources for opportunistic pathogens 

(Ainsworth et al. 2008a).  They went on to say that there was no doubt that the microbial 

communities play an important role in diseases (including bleaching), in fact that’s obvious 

given the symbiotic nature of the holobiont.  However, they warned that before experimental 

“solutions” such as the use of bacteriophages or the application of antibiotics were attempted, 

more research should be done on the potential presence of opportunistic pathogens, and how 

these treatments might affect them (Ainsworth et al. 2008a).   

In a later study, Hoegh-Guldberg’s group ran this experiment both in lab aquaria, to 

simulate Rosenberg’s experimental design, and in the ocean, representing their own design and 

the natural conditions of the coral (Ainsworth and Hoegh-Guldberg 2009).  The results of their 

studied showed that while the “penetration” into and “proliferation” of the bacteria within the 

outer layers of the coral tissues did occur in the aquaria, it did not occur in the ocean.  This 

suggests that Rosenberg’s results were largely an artifact of their research methods, rather than 
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of the actual conditions of the coral.  They also cited a study by Kline et al. (2006) which found 

“major increases” in the abundance of bacteria just by maintaining corals in aquaria, without any 

type of experimental stressor (i.e. changing the temperatures, adding pathogens, etc.).   

 Possible Causes of Coral Diseases  3.3.4

As was shown in the conflicting theories regarding the cause of coral bleaching, there is 

currently much debate among the scientific community as to whether most coral diseases are 

caused primarily by infectious biotic pathogens or environmental stress, which in turn makes the 

coral more vulnerable to opportunistic secondary infections by biotic organisms.  Consequently, 

while “identification of the causal agent(s) is typically the first question asked following an 

outbreak, it remains one of the most elusive aspects of coral disease epizootiology” (Williams 

and Miller 2005).  Identifying the primary cause for specific coral diseases has been especially 

challenging given that individual corals with a given disease have been found to have different, 

potentially pathogenic, microbes present (Casas et al. 2004; Pantos and Bythell 2006; Thompson 

et al. 2006; Lesser et al. 2007; Toledo-Hernández et al. 2008; Sunagawa et al. 2009; Weil and 

Rogers 2011).  Increasingly, studies are proposing that many, if not the majority, of coral 

diseases are caused by the infection of one or more opportunistic pathogens (Foley et al. 2005; 

Selig et al. 2006; Lesser et al. 2007; Weil and Rogers 2011), rather than a “single highly virulent 

primary pathogen” (Foley et al. 2005).  This theory is supported by recent experiments, which 

suggest that external, environmental stressors can trigger changes in coral’s microbial 

communities (Selig et al. 2006; Bally and Garrabou 2007; Abrego et al. 2008; Bourne et al. 

2008; Bourne et al. 2009).   

Rosenberg et. al.’s “Coral Probiotic Hypothesis” and “Hologenome Theory of Evolution” 

suggest that coral holobiont responds to stress by changing (or reconfiguring) the microbes 

present in order to increase their resistance to disease (Rosenberg et al. 2007b,2009a,2010; 
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Zilber-Rosenberg and Rosenberg 2008; Rosenberg and Zilber-Rosenberg 2011).   However, 

while the microbial communities associated with healthy corals do appear defense mechanisms, 

such as the production of antimicrobials (Mullen et al. 2004; Sutherland et al. 2004; Kelman et 

al. 2006; Ritchie 2006; Lesser et al. 2007; Ward et al. 2007); recent studies show that 

environmental stress tends to compromise these defense systems (Ritchie 2006; Klaus et al. 

2007; Lesser et al. 2007; Carilli et al. 2009; Carilli et al. 2010; Haapkylä et al. 2011) rather than 

activating or strengthening them.  Given that most corals appear to become diseased following 

physiological stress caused by various types of “environmental insults” (Bally and Garrabou 

2007; Lesser et al. 2007; Carilli et al. 2009; Sokolow 2009; Weil and Rogers 2011), it is 

important to understand the abiotic, environmental factors known to stress corals. 

 Coral Stressors 3.3.5

There are a number of stressors, which can cause decreased coral functioning, sterility, 

and mortality (Sammarco 1982; Bally and Garrabou 2007; Anthony et al. 2008; Anthony et al. 

2009; Harvell et al. 2009; Miloslavich et al. 2010).  The major stressors include: ocean 

temperatures outside ideal thermal range, ocean acidification caused by increased carbon dioxide 

levels,  large changes in salinity and nutrient levels, increased exposure to ultra-violet radiation, 

general pollution, physical damage, sedimentation, invasive species, over-fishing, and disease 

(Buddemeier et al. 2004; Anthony et al. 2007; Bally and Garrabou 2007; Donner and Potere 

2007; Lesser 2007; Lesser et al. 2007; Sokolow 2009; Haapkylä et al. 2011).  Of these, bleaching 

and other diseases have been the most widespread and severe (Ainsworth et al. 2008b), resulting 

in massive coral mortalities and ultimately community shifts towards algal species and away 

from reef-building corals  (McClanahan and Muthiga 1998; Aronson and Precht 2000,2001; 

McClanahan et al. 2001).  Recent studies of the Great Barrier Reef area show a marked decrease 

in both coral cover and diversity combined with an increase in seasonal disease outbreaks, which 
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are believed to be caused by a combination of agricultural runoff and climate change (Nowak 

2004; Haapkylä et al. 2011).   

Current climate change trends directly affect the marine environment by increasing the 

water temperature (Sokolow 2009; Lesser 2011; Richmond and Wolanski 2011; Voolstra et al. 

2011), decreasing the pH (Hoegh-Guldberg et al. 2007; Sokolow 2009; Wooldridge and Done 

2009; Hoegh-Guldberg 2011; Lesser 2011; Richmond and Wolanski 2011), causing sea level rise 

(Sokolow 2009; Hoegh-Guldberg 2011; Lesser 2011), changing ocean circulation patterns 

(Wilson et al. 2010; Lesser 2011), and decreasing salinity concentrations (Sokolow 2009; 

Haapkylä et al. 2011).  Warming of tropical waters is believed to affect the phase of the North 

Atlantic Oscillation, which in turn causes increases in marine disease outbreaks throughout the 

Caribbean (Hayes et al. 2001; Hoerling et al. 2001; Harvell et al. 2002; Rosenberg and Ben-

Haim 2002).  Climate change, specifically climatic warming, is known to cause increased rates 

of pathogen development, survival, transmission, and host susceptibility, which together will 

cause increased levels of the incidence, diversity, and severity of coral diseases (Colwell 1996; 

Porter et al. 2001; Aronson et al. 2002; Harvell et al. 2002,2007; Weil and Croquer 2009).  

Increased water temperatures are also known to cause large-scale bleaching events, such as the 

1998 El Nino global bleaching event which has been noted as the most severe and extensive 

bleaching occurrence on record (Harvell et al. 2002).  Bleaching is also known to severely stress 

corals, making them much more vulnerable to other diseases (Glynn 1993; Brown 1997; Hayes 

et al. 2001; Rosenberg and Ben-Haim 2002; Selig et al. 2006).   

This being said, there is the consistent and ever present problem of the lack of baseline 

data (Harvell et al. 2002).  Further, it has been exceptionally difficult for scientists to understand 

the link between infectious disease and climate change, since associations between the two do 

not necessarily imply causation (Marcogliese 2001; Harvell et al. 2002).  With the ever 
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increasing human population and globalization of the world market, comes severe and 

widespread, long-lasting environmental deterioration.  Humans play a direct role in the transport 

of both marine species and marine pathogens (Carlton and Geller 1993; Harvell et al. 1999), in 

much the same way Vibrio cholera, a bacterial pathogen, was transported across the world in the 

ballast waters of oil tankers (Ben-Haim and Rosenberg 2002).  Many scientists believe that 

anthropogenic stressors have stressed corals and their surrounding ecosystem, to such an extent 

that their resistance levels are severely compromised, while at the same time fostering the growth 

and virulence of their marine pathogens (Hayes et al. 2001; Harvell et al. 2002; Bruno et al. 

2003,2007; Lesser et al. 2007; Selkoe et al. 2009; Pittman and Brown 2011). 

 Acidification 3.3.5.1

Over the last 4 billion years the chemistry of the world’s oceans have undergone dramatic 

changes (Lunine 1999; Hamblin and Christiansen 2001; Garrison 2007).  The majority of these 

changes were the result of various natural environmental processes that occurred during the 

formation of the oceans and earth’s atmosphere.  However, changes in the seawater chemistry of 

modern oceans are caused primarily by changes in the atmospheric concentrations of carbon 

dioxide (CO2), nitrogen, and sulfur due to anthropogenic actions (Doney et al. 2007; Riegl et al. 

2009; Erez et al. 2011).  Until relatively recently, the average concentration of CO2 in the 

atmosphere ranged from 200 to 300 parts per million (ppm; Fabricius 2008; Riegl et al. 2009).  

Atmospheric CO2 concentrations began to increase dramatically (nearly 100 times faster than 

they had over the past 650,000) with the start of the Industrial Revolution in 18
th

 and 19
th

 

centuries due to an exponential increase in the amount of fossil fuels being combusted 

(Siegenthaler et al. 2005; Fabricius 2008; Riegl et al. 2009; Schmidt and Wolfe 2009; Veron et 

al. 2009; Erez et al. 2011).  Recent models are showing that the concentration of CO2 in the 

atmosphere may double or even triple during the next century, increasing from the present 
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concentration of ~387ppm to 540-970ppm by the year 2100 (Siegenthaler et al. 2005; Hoegh-

Guldberg et al. 2007; Fabricius 2008; De'ath et al. 2009; Riegl et al. 2009; Veron et al. 2009). 

Changes in the concentration of CO2 in the atmosphere are important to the survival of 

corals for several reasons.  The first is that 20-50% of the CO2 released during the burning of 

fossil fuels is absorbed by the ocean (Erez et al. 2011), which makes CO2 one of the major agents 

regulating the buffering capacity of the marine environment (Erez et al. 2011).  Typically, the pH 

of the ocean is considered to be slightly basic, oscillating between a pH of 7.7 and 8.3 (Madl 

2005; Sokolow 2009; Erez et al. 2011).  As CO2 dissolves in the ocean it forms carbonic acid, 

which in turn lowers the pH of the ocean causing it to become slightly more acidic (Feely et al. 

2004; Riegl et al. 2009; Sokolow 2009; Veron et al. 2009; Erez et al. 2011).  Consequently, large 

increases in the amount of CO2 being absorbed by the ocean results in acidification of the marine 

environment (Riegl et al. 2009; Sokolow 2009).   

Given that the skeleton of hermatypic corals is made of calcium carbonate (CaCO3), the 

pH of the ocean is especially important to corals.  Decreases in the pH of the ocean make it more 

difficult for corals to secrete CaCO3, which, in turn, slows the rate of growth (Kleypas et al. 

1999a,b; Ohde and Hossain 2004; Orr et al. 2005; Guinotte and Fabry 2008; Riegl et al. 2009; 

Sokolow 2009).  Additionally, if pH levels drop to (or below) 7.4, calcareous skeletons will not 

only stop growing, but they will begin to dissolve (Fine and Tchernov 2007b,a; Erez et al. 2011).  

As a result, ocean acidification is currently not only stressing corals and retarding their growth, 

but it has the very real potential of eliminating them all together (Veron 2008; Riegl et al. 2009; 

Erez et al. 2011).  Recent studies show that if atmospheric CO2 concentrations continue to 

increase as predicted,  reefs world-wide will being to show signs of increased stress due to 

acidification in the next 20-40 years (Caldeira and Wickett 2003; Cao et al. 2007; Hoegh-

Guldberg et al. 2007; Veron et al. 2009; Erez et al. 2011). 
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 Thermal Stress 3.3.5.2

Corals must live in a specific environmental niche in order to satisfy the requirements of 

both their animal and plant-like functions (Buddemeier et al. 2004).  Optimal living conditions 

for most corals require clear, shallow, oligotrophic waters within a relatively narrow thermal 

range.  While some corals have been found to survive in temperatures as low as 16˚C (Dana 

1843; Mayor 1915; Walton Smith 1971; Walker et al. 1982; Coles and Fadlallah 1991) and as 

high as 36˚C (Kinsman 1964; Walton Smith 1971; Jaap 1979; Walker et al. 1982; Coles and 

Fadlallah 1991; Hubbard 1997), the optimal thermal range for most tropical, shallow-water 

corals is between 25˚ and 29˚C (Vaughan and Wells 1943; Kinsman 1964; Jaap 1979; Walker et 

al. 1982; Hubbard 1997).  Within this range corals will tend to grow faster or slower depending 

on the temperature (Mayor 1914,1915; Vaughan and Wells 1943; Hubbard 1997).  Because 

corals have such a narrow optimal thermal range, relatively small fluctuations above or below 

this range can result in thermal stress (Walker et al. 1982; Hubbard 1997; Hoegh-Guldberg and 

Fine 2004).   The severity of the thermal stress caused by anomalous sea temperatures depends 

on a number of factors, such as:  how much deviation there is between the anomalous 

temperature and the optimal thermal range for that specific species of coral; how long the 

temperature anomaly lasts; and whether or not the coral experienced additional stress before,  

during, or after the change temperature (Hubbard 1997; Brown et al. 2002a,b; Carpenter et al. 

2008; Middlebrook et al. 2008; Brandt 2009; Carilli et al. 2009, 2010).  

Low levels of thermal stress are often exhibited as slowed growth rates, decreased 

reproductive success, and reduction in the coral’s ability to defend itself from and/or withstand 

additional stressors (aggression by other corals, macroalgal overgrowth, fighting off diseases, 

etc).  Moderate thermal stress often results in the suspension of all non-essential processes (such 

as growth and reproduction), and possible loss of their zooxanthellae (Walker et al. 1982; 
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Hubbard 1997; Crabbe 2008).  High thermal stress often causes the corals of an entire reef to 

lose their zooxanthellae.  Repeated, prolonged, or extreme thermal stress can result in coral 

mortality and possibly even the destruction of the entire reef system (Hubbard 1997).  

The majority of the observed coral bleaching episodes, including the world-wide mass 

coral bleaching of 1998 and the Caribbean-wide mass bleaching of 2005 (reported as the worst 

bleaching event on record), have occurred during warm-water anomalies (Brown 1997; Glynn et 

al. 2001; Aronson et al. 2002a; Douglas 2003; Strychar et al. 2004a; Strychar et al. 2004b; 

Takahashi et al. 2008; Croquer and Weil 2009; Coffroth et al. 2010; Csaszar et al. 2010; Eakin et 

al. 2010).  However, corals have also become bleached as the result of cold-water anomalies 

(Roberts et al. 1982; Walker et al. 1982; Hoegh-Guldberg and Fine 2004; Hoegh-Guldberg et al. 

2005; Crabbe 2008; Lirman et al. 2011).  Over the last few decades climate change has caused 

noticeable increases in the frequency, distribution, and severity of warm-water thermal bleaching 

events.  It is important to note that it is not just the increasing temperatures we have to worry 

about, climate change models are also predicting more extreme weather indicating consecutive 

bleaching as the result of both high and low thermal anomalies is likely to become increasingly 

more common. 

 Sea-Level Rise and  Changes in Carbonate Mineral Saturation 3.3.5.3

In order to understand how reefs will respond to both present and future changes in sea 

level, it is important to first understand how reefs evolved through geologic time.  When the rates 

of sea level change, coral reefs must in turn adapt their accretion (growth) rates in order to 

survive.  Reefs are generally found in warm, shallow waters, with the dominant reef-building 

corals (such as the Acropora spp.) generally located in waters less than 20 meters below the sea 

surface (see Figure 3.1 on page 25).  Below a “critical depth” of roughly 15m vital processes to 

the coral will begin to shut down (Schlager 1981 in Neuman and Macintyre 1985).  In order to 
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remain above this critical depth when the rate of sea level rise increases, corals must adjust their 

growth rates to either match (for shallow reefs that are already near the surface) or exceed the 

new rate of sea level rise (for deeper reefs), or risk drowning (Hallock and Schlager 1986).  

Conversely, if the reef is near the sea surface and the rate of sea level rise abruptly slows down, 

then the reef must either decrease its growth rate or switch from vertical accretion to horizontal 

accretion moving either forward into the current (prograde) or backward (with the current).  If 

the reef does neither it will continue to grow vertically until it is at or slightly above the sea 

surface, at which point a “capping” phase is often triggered, causing the top of the reef to be 

cemented over, preventing further growth.   

This relationship between the rates of sea level rise and coral accretion controls both the 

internal and external makeup of reefs by creating complex internal mosaics and external 

geometrics characteristic of the changes the reef undergoes (Neumann and Macintyre 1985).  

Thus, examination of both these interior and exterior characteristics can facilitate the study of the 

relationship between corals and changing sea levels (Neumann and Macintyre 1985).  By 

examining the succession in the vertical internal facies of cores that have been drilled from 

Holocene reefs, scientists are able to deduce the local sea level histories.  Not long after scientists 

first started examining these reef cores that Neumann and Macintyre (1985) proposed that when 

faced with sea level rise, reefs had three options (Figure 3.6): they must either “keep-up,” 

attempt to “catch-up,” or ultimately “give-up” (Neumann and Macintyre 1985; Hubbard 1997).  

As depicted in Figure 3.6, keep-up and catch-up reefs often alternate between being an 

A. palmata or A. cervicornis – dominated reef.  Both types of Acropora are known to have rapid 

growth rates compared to other types of corals, making it well suited for attempting to keep-up or 

even catch-up to rising sea levels.  A. palmata has a more narrow depth range, preferring only 

shallow waters; which is why it is often associated with keep-up reefs. Whereas, A. cervicornis 
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Figure 3.6 Diagram of the potential responses of various types of reefs to sea-level rise.   

 

has a larger optimal depth range and can withstand and thrive in deeper waters, which is why it is 

often associated with catch-up reefs.  Now what would happen if the coral was not able to 

increase its accretion rate enough, or even stopped accreting all together?  In this case the coral 

would eventually, if it has not already, “give-up” and drown.  This is often the case when deep 

water reefs, as they tend to be dominated by various types of slow growing head corals (depicted 

as the purple reef formations in Figure 3.6) which are not capable of achieving the rate of 

growth necessary to remain above their critical depth.   

It should also be noted that head corals are not the only corals known to give up in the 

facing of rising sea levels.  There are a number of factors that influence the relationship between 

rates of sea level rise and coral accretion; such as: how fast the rate of sea level rise is, whether 

or not the increase in sea level is smooth or oscillates, and whether or not the increase is constant 

or tends to abruptly start and stop (Neumann and Macintyre 1985).  The geomorphology of the 

base of the reef, referred to as “antecedent topography,” can also influence the reefs ability to 

adapt to the changing sea level.  For example, reefs that have a sloped base often have prolonged 

start-up times, which means that once their catch-up phase does start, they will have further to go 

than they would have if their base had been more level.  Other stressors such as changes in 
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temperature, salinity, turbidity, pollution, etc. can all stress the reef to such an extent that its 

accretion rates are slowed down dramatically, possibly even to the point at which the coral stops 

growing all together.  If the reef is bordered by a shallow lagoon, there is an even greater chance 

of coming into contact with stressors like these.  

 Agricultural Run-off 3.3.5.4

Studies show that over the past century the humans have severely altered the global 

nitrogen cycle, causing a massive increase in the amount of nitrogen, as well as other nutrients, 

being deposited into the oceans (Vitousek 1994; Nixon 1995; Bruno et al. 2003).  Agricultural 

runoff has been the primary source of the massive nutrient increase in the marine environment, 

followed by deforestation resultant runoffs, seepage from injection-well effluents through the 

water table, as well as some naturally caused nutrient increases such as: local upwellings and 

internal tidal bores (Shinn et al. 1994; Nixon 1995; Szmant 2002; Bruno et al. 2003; Leichter et 

al. 2003).   While the degree to which the “nutrient effect” is happening and influencing different 

parts of the world it is not entirely understood.  The one thing that is known is that this effect 

does exist and it poses a huge risk to the health and overall survival of marine systems as we 

know them because nutrients foster the spread of infections through feeding the microbial agents 

which make up the pathogens and stimulate algal growth (communication with John Bruno of 

the University of North Carolina cited in Nowak 2004).    A study by Bruno et al. (2003) directly 

tested the impact of nutrients on two diseases, and found significantly positive correlation 

between nutrient enrichment and both yellow-band disease, which mainly effects reef building 

massive corals, and Aspergillosis, which targets sea fan corals.   

Critics argue that any increases in nutrient levels would be “far too dilute” to adversely 

affect the corals (communication with Peter Ridd of James Cook University in Townsville, 

Australia cited in Nowak 2004).  Bruno agrees that there is no data to support a Caribbean wide 
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increase in nutrient concentrations, however given the positive correlation between specific 

diseases and nutrients it is more likely that “local nutrient enrichment” is adversely affecting 

these marine systems on small, local scales (Bruno et al. 2003).  The main fear is that if the 

degenerative changes in the Caribbean over the past 30 years are unprecedented in geologic 

history, than imagine how these environments will look in 100 years when the human caused 

stressors will be substantially greater (Bruno et al. 2003; Sutherland et al. 2004; Wapnick et al. 

2004). 

 Aeolian Dust 3.3.5.5

During the latter part of the past century the volume of dust on the Earth’s surface has 

risen dramatically due to wide scale droughts, poor resource management, agriculture resultant 

desertification, and natural cycles in general (Shinn et al. 2000; Pohl 2003).  While global 

aeolian dust redistribution is a natural cycle, the newly formed increases in dust levels have made 

the impacts of this invasive dust more apparent and severe (Shinn et al. 2000; Pohl 2003).  Some 

studies have found a direct correlation between Saharan dust and coral disease (Shinn et al. 2000; 

Harvell et al. 2002; Garrison et al. 2003).  

 Sewage and Other Pollutants 3.3.5.6

There is abundant evidence showing how severe pollution levels are adversely affecting 

the abundance, diversity, and overall habitat structure of coral reefs (Lewis 1984; Rogers 1990; 

Hughes 1994; Jackson 1997; Jackson et al. 2001; Pandolfi et al. 2003; Kaczmarsky et al. 2005; 

Klaus et al. 2007).  In 2002, Katherine Patterson and her colleagues reported the first direct link 

between human sewage and coral disease (Patterson et al. 2002).  Her study of the etiology of 

white pox disease revealed the first case of a marine invertebrate pathogen that was caused by a 

bacterial infection stemming from the human gut, the common fecal enterobacterium, Serratia 

marcesens (Patterson et al. 2002). 
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 Effect of Disease on Dominant Reef-building Corals 3.3.6

When studying coral disease, or coral reefs in general, there is one genus which is almost 

always mentioned, Acropora (Scleractinia, Acroporidae).  In addition to being highly speciose –

with more than 100 known species (Wallace 1999; Veron 2000; van Oppen et al. 2001; Riegl 

2002), and having one of the largest distributions – spanning  globally, acroporids are also 

primary reef-builders worldwide (van Oppen et al. 2001; Precht et al. 2002).  The genus is 

thought to date back to the Paleocene, providing a long geological and geo-spatial history of its 

species (van Oppen et al. 2001).  In addition to providing habitat for many reef organisms, 

acroporids are most noted for their rapid rates of growth, reef accretion, and framework 

development (Precht et al. 2002). 

Before diseases, acroporids were known for their ability to “grow like weeds,” 

rebounding so rapidly from hurricanes that within a few years storm damage was almost 

indiscernible (Shinn 2004).  A small, healthy colony of Acropora cervicornis had been known to 

grow an average of 10cm per year, expanding from a colony of 10 branches to over 59,000m of 

branches in only 10 years (Shinn 1976,2004).  This genus has served as a foundation for healthy 

reefs around the world for thousands of years (Lewis 1984).  In the last few decades, acroporids 

have taken a dramatic turn for the worse both on a regional and global scale.  Acropora are 

generally the first species to experience severe declines during periods of disease epizootics and 

high stress (Riegl 2002).   

 In the last few decades, two coral diseases specific to Acropora (White-Band Disease and 

White Pox Disease) caused a dramatic decline in the two endemic Caribbean Acropora species, 

A. palmata and A. cervicornis (Figure 3.7).  Both were candidates for Endangered Species status 

for 14 years (Richardson 1998; Green and Bruckner 2000; Patterson et al. 2002; Precht et al. 

2002,2004); attaining official threatened status on June 8, 2006 (NMFS 2006).  Similar trends  



 

58 

 

Figure 3.7   Time Series photographs depicting Caribbean Acropora species transitioning  

from healthy corals to algal-dominated, reef ruble in San Cristobal, Puerto Rico.  (A) Acropora 

palmata in 1999 and 2009.  (B) Acropora cervicornis and Acropora prolifera in 2001 and 2009.  

Note: the above figure was adapted from Figure 2 on page 555 of Bourne et al. (2009) with 

photographs taken by Ernesto Weil. 

 

are following in the Indo-Pacific where, repeatedly, this genus was found to be the first infected 

and experience the highest terminal losses from density-dependent diseases (Riegl 2002).  One 

study from the Arabian Gulf reported an Acropora mass mortality in the late 1990s, resulting in a 

decrease from ~ 80% total coral cover in 1996, to 0% in 1998, with no signs of substantial 

regrowth in following years (Riegl 2002).  Riegl reports that, in addition to diseases occurring 

predominantly in Acropora, the diseases would kill all species within the genus and then either 

disappear along with the coral or move on to other, less susceptible hosts.   
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 Theories regarding why Acropora species are so susceptible to disease include the 

following: (1) diseases preferentially target the most dominant, dense species (Riegl 2002; 

McClanahan et al. 2004a);  (2) some species grow much slower when damaged (Winkler et al. 

2004), thus reducing their ability to rebound from the pathogenic encroachment; (3) 

fragmentation from storms may increase susceptibility to infection (Winkler et al. 2004); (4) 

once damaged or infected the species exhibit marked decreases in reproduction, often ceasing all 

sexual forms of spawning all together; and last (5) stressed scleractinians, in general, have been 

shown to be more susceptible to pathogenic syndromes (Winkler et al. 2004).  It is surprising 

that, while several studies suggest that acroporids are indicator species of reef decline, there is 

strong resistance from some corners to putting the two Caribbean species on the endangered 

species list (CoRIS 2004; Shinn 2004).  Figure 3.8 depicts the major diseases known to affect 

the Acropora coral genus world-wide.    

3.4 Review of Current Research Methods 

Although the field of coral pathology has received much attention lately, relatively little 

is known regarding the identification and understanding of causative agents of these diseases 

(Sutherland et al. 2004; Abrego et al. 2008; Bourne et al. 2008; Bourne et al. 2009; Correa et al. 

2009; Mydlarz et al. 2010), especially when compared to the pathology of humans and other 

terrestrial organisms.  As has been discussed in previous sections, progress in this area has been 

difficult due to the complex nature of both the coral holobiont and the surrounding marine 

environment (Ainsworth et al. 2008c; Ainsworth and Hoegh-Guldberg 2009).  Recent 

technological advances have not only facilitated and improved our ability to study corals, but 

also greatly enhanced our understanding of coral histology (Bourne et al. 2009; Correa et al. 

2009; Krediet et al. 2009; DeSalvo et al. 2010; Lins-de-Barros et al. 2010; Mydlarz et al. 2010; 

Kvennefors et al. 2011).   
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Figure 3.8 (shown on the following page)  Diseases known to affect the Acropora coral 

genus worldwide.  The diseases shown on the top row (A – C) are known to only Acropora 

corals world-wide; while the diseases on the second row (D – E) appear to only affect Caribbean  

Acropora species, and the diseases on the bottom two rows (F – K) affect Acropora in the Indo-

Pacific.  (A) Thermal Bleaching on A. millepora at the Great Barrier Reef, Australia.  (B) 

Growth Anomalies (GA) on branching Acropora at the Great Barrier Reef, Australia. (C) 

Skeletal Anomaly (SKA) on A. palmata.  (D) The two types of White-Band Disease (WBD), 

both depicted on A. palmata; WBD Type I is depicted in D1 and WBD Type II is depicted in D2. 

(E) White-Pox Disease (WPD or WPox), also known as Acroporid Serratiosis (APS), on A. 

palmata.  (F) Black-Band Disease (BBD) on an Acropora species.  (G) Brown-Band Disease on 

a branching Acropora species at the Great Barrier Reef, Australia. (H) Skeleton Eroding Band 

Disease (SEB) on A. intermedia at the Great Barrier Reef, Australia.  (I)   White Syndrome (WS) 

on a plating Acropora species at the Great Barrier Reef, Australia. (J) Yellow-Band Disease 

(YBD) on A. pharaonis. (K) BBD and SEB on the same colony of A. muricata at the Great 

Barrier Reef, Australia.   Note: the above disease depictions were taken from the following 

sources: (A) taken from Figure 2 on page 1361 of Jones et al. (2008); (B,G,H, I) photos were 

taken by Betty Willis and published in Figure 8 on page 183 of Harvell et al. (2007); (C and D1) 

taken from Figure 3 on page 282 of Sutherland et al. (2004);  (D2, E) photos were taken by 

Ernesto Weil and published in Figure 3 on page 178 of Harvell et al. (2007); (F) taken from page 

29 of Raymundo et al. (2008); (J) taken from page 22 of Korrubel and Riegl (1998); and (K) 

taken from Figure 4 on page 47 of Page and Willis (2006). 
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Figure 3.8 (see figure legend on the preceding page)  
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also greatly enhanced our understanding of coral histology (McClanahan et al. 2004b; Peters 

2006; Ainsworth et al. 2007a; Abrego et al. 2008; Ainsworth and Hoegh-Guldberg 2008; Bourne 

et al. 2008; Bourne et al. 2009; Correa et al. 2009; Krediet et al. 2009; DeSalvo et al. 2010; Lins-

de-Barros et al. 2010; Mydlarz et al. 2010; Kvennefors et al. 2011).   

However, our overall understanding of coral pathology, specifically the epizootiology, 

etiology, and histopathology of coral diseases (see Table 3.1 for definitions), has been hindered 

by the following problems with current research methods: (1) lack of consensus concerning the 

nomenclature associated with coral pathology; (2) how to correctly identify and distinguish 

between specific coral diseases in the field; and last, (3) the basis for etiologic diagnoses and 

overall design of current epidemiological models. 

 Nomenclature  3.4.1

 The lack of a consensus on the terminology associated with coral diseases makes it 

difficult to differentiate between different diseases and for researchers to collaborate.  In recent 

years there has been a push to use the medical community’s standard disease-related 

terminology, such as the terms shown in Table 3.1 (Sutherland et al. 2004.; Peters 2006; Work 

and Aeby 2006; Work et al. 2008).  As part of this effort researchers from around the world have 

been working to create a common coral disease nomenclature system (Work and Aeby 2006; 

Raymundo et al. 2008; Woodley et al. 2008; Work et al. 2008; ICRI/UNEP-WCMC 2010a,b).  

However, despite these efforts there continues to be disagreements over the correct definitions 

and appropriate use of these terms.  While most coral disease literature that provides a definition 

of the term “disease” uses some variation of the standard medical definition
1
 in which a disease 

is essentially any condition that impairs the normal functioning of an organism  (Peters 1997; 

McCallum et al. 2004; Rosenberg 2004; Sutherland et al. 2004; Weil 2004; Work and Aeby  

                                                 
1
 as defined by popular medical dictionaries, such as the Dorland’s and Stedman’s Medical Dictionary series 
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Table 3.1  Important Medical Terminology Related to Coral Diseases 

Apoptosis Programmed cell death 

Atrophy A wasting of tissues, organs, or the entire body, as from death & reabsorption of cells, diminished 

cellular proliferation, decreased cellular volume, pressure, ischemia, malnutrition, lessened 

function, or hormonal changes 

Defense 

Mechanism 
A physiological self-protecting response of an organism to a harmful stimuli 

Epizootiology The study of the distribution and determinants of health-related states or events in specified  

animal populations, and the application of this study to control health problems  

Note: The term “Epidemiology” should be used only when referring to human populations  

Etiology The science and study of the causes of disease and their mode of operation 

Histology The science concerned with the minute structure of cells, tissues, & organs in relation to their 

function 

Histopathology Science or study dealing with the cytologic & histologic structure of abnormal or diseased tissue 

Hyperplasia An increase in the number of normal cells in a tissue or organ, not due to tumor formation 

Hypertrophy General increase in bulk or a part of an organ, not due to tumor formation 

Infectious A disease capable of being transmitted from patient to patient, with or without actual contact 

Lesion A wound or injury; a pathologic change in the tissues.  One of the individual points or patches of 

multifocal disease 

Necrosis Pathologic death of one or more cells, or of a portion of tissue or organ, resulting from irreversible 

damage 

Neoplasia The pathologic process that results in the formation & growth of a neoplasm (tumor) 

Panzootic An epizootic occurring on a global scale 

Parasite An organism that lives on or in another & draws its nourishment therefrom 

Pathogen 

Opportunistic P. 

Any virus, microorganism, or other substance causing disease 

an organism that is capable of causing disease only when the host’s resistance is lowered 

Pathology The form of medical science & specialty practice concerned with all aspects of disease 

Sign Any abnormality indicative of disease, discoverable on examination of the patient; an objective 

indication of disease. 

Note: the term “symptom” refers to subjective indications of disease; consequently humans are 

the only type of animal that has symptoms associated with a given disease.    

Stress Reactions of the body to forces of a deleterious nature, infections, & various abnormal states that 

tend to disturb its normal physiologic equilibrium (homeostasis) 

Stressor An event or association that triggers a stress response 

Susceptibility Likelihood of an individual to develop ill effects from an external agent 

Note: the above definitions were adapted slightly from the 28
th
 Edition of Stedman’s Medical Dictionary (2006)  
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2006; Raymundo et al. 2008; Woodley et al. 2008; Work et al. 2008) , many of these same 

researchers disagree as to which conditions should be classified as “diseased.”     

For example, one common dispute is over whether coral bleaching should be classified as 

a disease.  Most researchers would agree that the normal functioning of corals becomes impaired 

during the bleaching process; which should mean that bleached corals are diseased regardless of 

whether their condition was caused by bacteria or thermal stress.  The following studies agree 

with this logic, arguing that coral bleaching should be considered a type of coral disease 

(Rosenberg and Ben-Haim 2002; Jokiel 2004; Rosenberg 2004; Weil 2004; Rosenberg and 

Barash 2005; Woodley et al. 2008).  However, other studies disagree, arguing that bleaching is 

not a disease because it is caused by physiological (namely thermal) stress (Hayes and Goreau 

1998; Richardson 1998).  The latter argument is supported by the vast majority of coral 

publications which refer to coral bleaching and coral disease separately through the use of 

phrases like “coral bleaching and disease” rather than “coral bleaching and other diseases”, 

implying (intentionally or unintentionally) that bleaching is not a disease.   

 Another common dispute has to do with the difference between “diseases” and 

“syndromes,” and how the standard medical definitions of the two terms (see Table 3.2) should 

be interpreted with regard to corals.  Some argue that, based on these definitions, the two terms 

are synonymous and can be used interchangeably (Sutherland et al. 2004; Work and Aeby 2006); 

while others argue that the term “syndrome” should be used when referring to a poorly 

understood conditions, reserving “disease” for only those conditions in which the causative 

agent(s) have been identified (Hayes and Goreau 1998; Richardson 1998; Weil 2004; Lesser et 

al. 2007; Sheppard et al. 2009).  Of the researchers in favor of distinguishing between diseases 

and syndromes, there is additional disagreement over what criteria must be met in order for 

something to be considered an etiologic agent.   
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Table 3.2   Comparing the standard medical definitions of “disease” and “syndrome” used by 

the most common medical dictionaries series both in print (Stedman’s and Dorland’s) and online 

(MedicineNet.com and MedlinePlus.com).  

Medical Dictionary Disease Syndrome 

Stedman (2006) “1. An interruption, cessation, or disorder of 

a body, system, or organ structure or 

function. SYN  illness, morbus, sickness. 

2. A morbid entity ordinarily characterized 

by two or more of the following criteria: 

recognized etiologic agent(s), identifiable 

group of signs and symptoms, or 

consistent anatomic alterations.                              

SEE ALSO  syndrome.”  (page 550) 

“This word is not properly applied to a 

solitary symptom or sign.   

The aggregate of symptoms and signs 

associated with any morbid process, together 

constituting the picture of the disease.                 

SEE ALSO disease.” (page 1888) 

Dorland (1994) “any deviation from or interruption of the 

normal structure of function of any part, 

organ, or system (or combination thereof) 

of the body that is manifested by a 

characteristic set of symptoms and signs 

and whose etiology, pathology, and 

prognosis may be known or unknown.” 

(page 478) 

“[a] set of symptoms which occur together” 

(page 1632) 

MedicineNet (2011) “Illness or sickness often characterized by 

typical patient problems (symptoms) and 

physical findings (signs).” 

“A set of signs and symptoms that tend to 

occur together and which reflect the presence 

of a particular disease or an increased chance 

of developing a particular disease.” 

MedlinePlus (2003) “An impairment of the normal state of the 

living animal or plant body or one of its 

parts that interrupts or modifies the 

performance of the vital functions, is 

typically manifested by distinguishing 

signs and symptoms, and is a response to 

environmental factors (as malnutrition, 

industrial hazards, or climate), to specific 

infective agents (as worms, bacteria, or 

viruses), to inherent defects of the organism 

(as genetic anomalies), or to combinations 

of these factors : SICKNESS, ILLNESS 

—called also morbus; compare HEALTH” 

“A group of signs and symptoms that occur 

together and characterize a particular 

abnormality” 
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 Some take a very strict approach, arguing that causation can only be proven through the 

fulfillment of Koch’s postulates (Hayes and Goreau 1998; Richardson 1998).  Adherence to this 

logic would mean that only those conditions caused by a single, biotic pathogen should be 

classified as coral diseases.  As will be discussed in section 3.4.3, Koch’s postulates are very 

limited, and not well suited for marine studies.  Consequently, conditions caused by abiotic 

agents or otherwise brought about through physiologic stress would not qualify as coral diseases; 

nor would conditions caused by more than one biotic pathogen.  Using this logic, not only would 

thermal bleaching and Black-Band Disease (which arguably have the most studied and 

understood etiologies) not be considered diseases, but some might argue that even those 

conditions that have fulfilled Koch’s postulates were actually opportunistic infections following 

environmental stress and therefore would not fall under the category given that their primary 

cause was abiotic (Lesser et al. 2007). 

 While others take a slightly more relaxed approach, using the two terms to distinguish 

between conditions based on how much is known about their causative agent(s) and general 

etiology (Weil 2004; Lesser et al. 2007; Sheppard et al. 2009), rather than whether or not the 

condition is caused by an etiologic agent capable of meeting the requirements laid out by Koch’s 

postulates.  Universal adherence to this approach has the potential to facilitate comparisons of 

specific coral conditions between different studies.  However, it is also problematic as most 

studies classify coral conditions based on the presence or absence of visually identifiable, gross 

(large) lesions or otherwise signs of disease, and are often unable to confirm their visual 

diagnosis through analyses performed at the microscopic level (Work and Aeby 2006; 

ICRI/UNEP-WCMC 2010a).  For this reason, the approach laid out by Work and Aeby (2006) in 

the following section (3.4.2) would likely provide a more robust foundation for cross-study 

comparisons of different coral health, than would distinguishing between diseases and 
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syndromes while continuing to use vague names such as black-band, yellow-band, white-band, 

white-pox, white-plague, etc.   

 Identification 3.4.2

Currently, most diseases and/or syndromes are named according to the color and pattern 

changes they elicit in the tissues of the infected coral (e.g. white, black, red, or yellow band, line, 

blotch, spot, or pox disease).  This system is problematic for many reasons.  First, the resulting 

names are vague and subjective, which creates inherent confusion and difficulty distinguishing 

between the various band, line, patch, blotch, pox, spots diseases (Work and Aeby 2006; 

Ainsworth et al. 2007b).  Additionally, corals are relatively simple organisms (especially when 

compared to other animals, such as humans), and as such, they have a limited number of 

different ways stress can be visibly expressed (i.e. “signs” of disease) by the coral at the gross 

level (Sutherland et al. 2004; Work and Aeby 2006; Weil and Rogers 2011).  Consequently, the 

same visible signs could be caused by different diseases (Ainsworth et al. 2007b; ICRI/UNEP-

WCMC 2010a); or multiple, concurrent diseases.  Further, diseases that affect different types of 

corals, may illicit different signs based on the physiology of the coral it is infecting.  Thus, one 

disease could be identified as several diseases, depending upon its stage of 

development/progression, the type of coral it is affecting, and whether other diseases and/or 

stressors are influencing the visual signs of the coral’s compromised health.   

To avoid the problems listed above, Work and Aeby (2006) suggest that when data are 

collected in the field, researchers should follow a standardized protocol for describing the lesions 

(signs of disease) on each coral, without trying to diagnosis what disease is causing the lesion.    

While there is no one right way to describe a lesion, the description 

should be explicit, concise, and provide applicable information on 

distribution, location on colony, edges, margins, shapes, relief, texture, 

color, size, and structures affected. Use of appropriate terminology 

aids brevity (Fig. 1, Tables 1 and 2).     – Work and Aeby (2006) 
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Figure 3.9 on the following page summarizes the diagnostic protocol laid out in the figure and 

tables referred to in the above quote.   Collecting data using the 15 criteria listed in Figure 3.9 

enables researchers to generate “concise and objective” morphologic descriptions of the disease 

lesions, which can then be used to generate strong case definitions of the  observed disease 

(Work and Aeby 2006).  Removing the subjective names and descriptions from coral disease 

data further facilitates cross-study comparisons, because the same terminology is used.  This is 

especially important given that corals may exhibit the same external signs of stress as the result 

of different diseases or other environmental stressors.   

 Epidemiologic Models and Etiologic Diagnoses  3.4.3

The differences between terrestrial and marine systems make “the direct application of 

most epidemiological models difficult to interpret for marine systems” (Sokolow et al. 2009).   

For example, transmission rates in epidemic models typically depend 

on contact rates among susceptible and infectious hosts (McCallum et 

al. 2001), and this concept is not interpretable when hosts, such as 

coral, are sessile for most of their lives.  Rather, movement and 

survival of pathogens outside hosts must be incorporated.  

– Sokolow et al. (2009) 

 

Additionally, the fluid nature of the marine environment makes the implementation of standard 

epidemiological protocols difficult, if not impossible.  One of the first measures taken when 

dealing with a disease outbreak, particularly those involving new diseases with unknown 

etiologies but appearing to be contagious, is to start isolation, containment, and quarantine 

procedures.  However, in the case of coral epizootics, not only is isolation of a diseased coral 

impractical, but even if the coral could be quarantined through the use of some type of physical 

structure this would likely do more harm than good.  Even though corals are considered to be 

relatively simple organisms (Weil and Rogers 2011), researchers are just starting to understand 

the complex nature of the holobiont (Reshef et al. 2006).  Complete containment of a diseased 

coral would make the ocean water included in the containment device stagnant, potentially 
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Figure 3.9 (shown on the following page)  Types of information that should be recorded 

when describing disease lesions on corals in the field.  Note: this figure summarizes the 

information provided in Work and Aeby’s (2006) Tables 1-2 and Figure 1 on pages 156-157.  

The depictions of coral types shown in 1(a-e) are from page 485 of  Veron and Wallace (1984) 

and are available online at: http://biophysics.sbg.ac.at/coral/morfacro.htm; the depiction of the 

“free-living” coral type shown in 1(f) was taken from a Tiwan study that is available online at: 

http://163.26.138.2/dyna/webs/index.php?account=admin&id=22&mod_area=15; the coral 

image used for 2(a-f), 3(a-d), and 8(a-k) was adapted from the Brain Coral depicted on page 87 

of Humann and Deloach (2002); and last the images shown in 4-7 were taken from Figure 1 on 

page 157 of Work and Aeby (2006). 

  

http://biophysics.sbg.ac.at/coral/morfacro.htm
http://163.26.138.2/dyna/webs/index.php?account=admin&id=22&mod_area=15
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1. Describe what Type of Coral is the lesion found on 

Identify the general colony type according to its overall structure & if possible specify the Genus and species 

      

(a) Massive (b) Encrusting (c) Laminar/Explanate (d) Corymbose  (e) Branching/Foliaceous/Arborescent (f) Free-Living  

2. Describe Where the lesions are located on the colony 

      
(a) Apical  (b) Medial (c) Basal (d) Central (e) Peripheral (f) Colony-wide 

3. Describe the how the lesions are Distributed across the surface of the colony 

    
(a) Focal     (b) Multifocal (c) Multifocal to Coalescing (d) Diffuse 

4. Describe the appearance of the lesion Edges 5. Describe the appearance of the lesion Margins 

    
                             

(a) Distinct (b) Indistinct (c) Annular  (a) Smooth (b) Serrated (c) Undulating (d) Serpiginous 

6. Describe the Shape of the lesions 

    
   

(a) Circular (b) Oblong (c) Pyriform (d) Cruciform (e) Linear (f) Lanceolate (g) Irregular 

7. Describe any three-dimensional structure associated with the lesion (i.e. the Relief of the lesion) 

                       
       

(a) Umbonate (b) Bosselated (c) Nodular (d) Exophytic (e) Fimbriated 

8. Describe the Color of the lesion 

           
(a) White  (b) Black  (c)  Tan (d) Brown    (e) Red (f) Orange (g) Yellow  (h) Green (i) Blue  (j) Purple    (k) Pink 

9. Describe the Size of the lesions 10.   Describe the Number of lesions on the colony 

(a) Small    (b) Medium    (c) Large   (d) Physical Measurement (a) Small     (b) Medium     (c) Large    (d) Actual Count 

11. Lesion Texture  12.  Lesion Extent (% of Surface Area Covered) 13. Time (Rate of Lesion Onset) 

(a) Rugose 

(b) Smooth 

(a)  Mild (< 20%)                         

(b) Moderate (21-50%)  

(c) Severe (> 50%) 

(a) Acute (hours – days)                    

(b) Sub-Acut  (weeks)      

(c)  Chronic  (months – years) 

14. Tentative Categorization of Lesion  15.  Structures of the Coral Affected by the Lesion 

(a) Tissue Loss     (b) Discoloration   (c) Growth Anomaly (a) Polyp         (b) Coenosarc      (c) Skeleton 

Figure 3.9   (see figure legend on the preceding page) 
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leading to eutrophic conditions, as well as starving both the symbiotic microbial inhabitants and 

their coral host of essential nutrients, and potentially causing the contained water to increase in 

temperature.  Additionally, the device itself might shade the coral preventing the zooxanthellae 

from receiving the sunlight needed to undergo photosynthesis.  Given that quarantine measures 

could potentially protect the surrounding healthy corals, the additional harm caused to the 

contained diseased coral might be considered an  acceptable risk.  However, this type of 

containment would only work for coral diseases caused exclusively by contagious biotic 

pathogens, transmitted through either the water column or biotic vectors (fish, snails, etc.).  The 

primary type of diagnosing this type of disease is through the fulfillment of Koch’s postulates. 

 Koch’s Postulates 3.4.3.1

Of the numerous coral diseases that have been identified over the last few decades, Koch’s 

postulates have only been fulfilled for the following five diseases (shown in Figure 3.10):  White 

Plague II (Richardson et al. 1998b; Denner et al. 2003); White-Band II (Ritchie and Smith 1998); 

White Pox, also referred to as Acroporid Serratiosis (Patterson et al. 2002; Sutherland et al. 

2010,2011); Aspergillosis (Smith et al. 1996,1998; Geiser et al. 1998); and Bacterial Bleaching 

(Kushmaro et al. 1996-1998,2001; Ben-Haim and Rosenberg 2002; Ben-Haim et al. 2003a,b).   

While many scientists argue that fulfillment of Koch’s postulates serves as definitive 

proof that the etiologic (causative) agent of the given coral disease was biotic in origin 

(Kushmaro et al. 1996-1997,2001; Richardson 1998; Ben-Haim and Rosenberg 2002; Patterson 

et al. 2002; Ben-Haim et al. 2003a; Denner et al. 2003);  others argue that Koch’s postulates 

should not be used as the standard as there are numerous diseases for which the postulates cannot 

or should not be fulfilled (Fredricks and Relman 1996; US EPA 2000; Banin et al. 2001a,b; 

Ritchie et al. 2001; Sutherland et al. 2004; Selig et al. 2006; Lesser et al. 2007; Work et al. 2008; 

Sokolow 2009).  Additionally, Lesser et al. (2007) argue that most coral diseases, including those 
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Figure 3.10 The five coral diseases in which Koch’s postulates have been fulfilled, indicating 

that each is a biotically induced disease caused by the microbial pathogen indicated below.  

Note: this figure was adapted from Figure 3 on page 178 of Harvell et al. (2007). 

 

for which Koch’s postulates have been fulfilled, are actually secondary infections caused by 

opportunistic pathogens and that the primary cause of the disease is the physiological stress 

caused by abiotic environmental factors.   

There are numerous potential problems with using Koch’s Postulates in marine systems.   

Koch’s postulates cannot be fulfilled according to the strict 

definition of the procedure for diseases that: (1) are caused by 

unculturable bacteria, fungi, or viruses (2) are caused by a 

consortium of microorganisms, (3) are caused by abiotic stressors, 

(4) require a vector or a carrier state, (5) cause subclinical or latent 

infection, or (6) cause injury through systemic attack via virulence 

factors such as toxins (Fredricks and Relman 1996; US EPA 

2000). – Sutherland et al. (2004) 

Additionally, the very nature of corals makes the postulate almost impossible to use, as (1) it is 

almost impossible to replicate “normal” physical and chemical reef environments in a laboratory; 
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(2) since the natural modes of pathogenic infection are not known it is impossible to simulate 

them through lab inoculations; and (3) as many presumed pathogenic microbes are found on the 

surface of corals, it is hard to transport them back to the lab without damaging the microbe or 

contaminating the aquarium water unintentionally (Sutherland et al. 2004; Selig et al. 2006).   It 

is also important to note that the fulfillment of Koch’s postulates, as well as other more modern 

molecular techniques, “do not prove disease causation” (Sutherland et al. 2004).  However, they 

are important in that their results may indicate the presence of associations between potential 

biotic pathogens and a given disease, and thus furthering our understanding of the etiologic 

process for the given infectious disease (Ritchie et al. 2001; Sutherland et al. 2004).   

Given the rapidly deteriorating condition of corals reefs worldwide, coupled with the 

grim outlook for their future, it is clear that substantial changes and progress needs to be made in 

the current methods being used to study these diseases.  First, there needs to be more agreement 

among researchers as to the disease nomenclature used concerning corals.  Second, more detail 

needs to be recorded when performing disease surveys in the field, and it is important that a 

standardized approach and specific terminology (such as that proposed by Work and Aeby 2006) 

be used.  Third, current epidemiological models need to be adapted for the marine environment, 

including creating alternative criteria for disease causation for cases in which Koch’s postulates 

are not appropriate (Sutherland et al. 2004).  Last, as described in the following section (3.5), a 

geospatial analytical component needs to be added to these epidemiological models so that the 

spatial nature of these epizootics can be studied at local, regional, and global scales. 

3.5 Geospatial Analysis and Coral Epizootiology 

Increasingly studies are reporting that spatial distribution and patterns of both disease and 

other environmental factors may improve our understanding of both the cause and transmission 

dynamics of various coral diseases (Real and McElhany 1996; Foley et al. 2005; Crowder et al. 
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2006; Grober-Dunsmore et al. 2006; Ritchie 2006; Selig et al. 2006; Jones et al. 2008; Selkoe et 

al. 2009; Sokolow 2009; Weil and Croquer 2009; Zvuloni et al. 2009; Eakin et al. 2010; Ruiz-

Moreno et al. 2010; Selig et al. 2010; Maina et al. 2011; Pittman and Brown 2011).   As part of 

this recognition, the recording of GPS coordinates has become standard protocol for many coral 

field studies (Ginsburg 2000; Weil et al. 2002; Lang 2003; Willis et al. 2004; Grober-Dunsmore 

et al. 2006; Mayor et al. 2006; ICRI/UNEP-WCMC 2010b; Pittman and Brown 2011). 

However, despite this growing recognition of the importance of studying the spatial 

nature of both coral diseases and their environmental stressors, only a handful of studies have 

actually used spatial statistics to analyze their spatial data (Jolles et al. 2002; Foley et al. 2005; 

Zvuloni et al. 2009).  Further, the type of spatial analysis used by all of these studies was the 

Ripley’s K statistic, which provides no spatial (mappable) output.  Consequently, while these 

studies were able to determine whether or not diseased corals were spatially clustered (and, if so, 

at what spatial scales this clustering was occurring at), their results provided  no indication of 

where these clusters were occurring.   

Meanwhile, the remainder of the studies claiming to spatially analyze coral disease data, 

either rely on visual examination of disease locations (Grober-Dunsmore et al. 2006; Mayor et al. 

2006; Selkoe et al. 2009), or use standard, linear statistics to analyze their spatial data (Selig et 

al. 2010; Maina et al. 2011).  There are several problems with using traditional statistical 

techniques on spatial data.  First, the very nature of these techniques treats the data as if all the 

points are occurring in the exact same location.    Second, many of these statistics are based on 

underlying assumptions that the data has a normal, homogeneous distribution (Maina et al. 

2011); which is an inappropriate assumption considering that both corals (as well as most living 

creatures) and environmental stressors almost always have heterogeneous spatial distributions 

(Harley et al. 2006; Ruiz-Moreno et al. 2010; Selig et al. 2010). 
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The correct use and application of both GIS and spatial analytical methods can provide 

researchers with powerful new tools for understanding the epizootiology of coral diseases, as 

well as, improving disease prevention and control.   Table 3.3 provides a summary of some of 

the different types of information that has the potential to greatly enhance our understanding of 

coral health, but can be attained only through the correct use of GIS and spatial analysis.  

 

 

Table 3.3 Examples of types of information regarding coral epizootiology that can  only be 

attained using geospatial analysis. 

 whether or not diseases cluster 

 distance scales of disease clusters 

  whether these clusters are real or just artifacts of high underlying population density 

 where clusters are occurring 

 intensity and density information 

 spatial prevalence information 

 areas with high and/or low clustering levels  

 the presence of statistically significant clustering areas 

 the ability to take spatial patterns and compare them to environmental factors 

 the ability to integrate spatial models with mathematical and/or predictive models 

 the ability to locate and investigate and protect areas with increased risk  
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Chapter 4. Datasets and General Methodology  

“Geographic assessments of coral diseases are needed to 

understand their local and geographic spatial-temporal variability”                                

–  Weil and Croquer (2009) 

4.1 The Study Design 

Different types of spatial analysis methods, as well as different parameter settings within 

each analysis method, can produce noticeably different results.  Consequently, poor selection or 

improper use of a given technique can lead to inaccurate representations of the spatial 

distribution, resulting in false interpretations of the disease.  For this reason, I first performed a 

comprehensive review of many analytical techniques commonly used by spatial epidemiologists.   

Following Cai et al. (2011), the performance, accuracy, and effectiveness of each type of 

analysis was assessed using an artificial dataset with known cluster locations.  In order to ensure 

that the scale and spatial distribution of the artificial data would be similar to that of an actual 

coral disease dataset, I created the artificial dataset using the geographic and biologic attributes 

of data from an actual coral disease outbreak that occurred in the US Virgin Islands (USVI).  I 

then used the results from each of the analyses performed on the artificial cluster dataset to 

develop a geospatial analytical protocol for coral epizootiology.  I then used this protocol to 

spatially analyze the original coral disease dataset.      

4.2 Study Site and Datasets 

 Buck Island (BUIS) Study Site and White-Band Disease (WBD) Coral Dataset 4.2.1

The Buck Island Reef National Monument was used as the study location for all 

geospatial analyses presented in this dissertation (Figure 4.1).  In order to preserve the Acropora 

palmata  barrier reef surrounding Buck Island (BUIS) the area was designated a National 

Monument in 1961; forty years later, in 2001, the park boundaries were expanded from the initial 

356ha to 7,695ha (Causey et al. 2002; Mayor et al. 2006).  
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Figure 4.1 The location of the Buck Island (BUIS) Reef National Monument, in relation to 

the rest of the Caribbean.  Note: this figure was adapted from Figure 1 in Lentz et al. 2011.   

 
The coral disease dataset was originally compiled during the summer of 2004 by the US 

National Park Service for a study by Mayor et al. (2006), which examined the distribution and 

abundance of A. palmata and the prevalence of white-band disease (WBD) around Buck Island 

(BUIS).  In order to increase the chances of locating this already threatened species, Mayor’s 

study only looked at habitats suitable for A. palmata, limiting the survey region to hard-bottom 

areas shallower than 10m (depicted as the light grey irregular polygon surrounding BUIS in 

Figures 4.1-4.3).  Mayor et al. (2006) used ArcView 3.3 to generate 675 survey points that were 

randomly distributed throughout the survey region.  However, 58 of these points were excluded 

because they were either located in depths greater than 10m or on emerging reefs which could 

not be surveyed by divers as the tops of the reefs were either at or above the sea surface.  

Snorkeling teams performed 10 by 25m transect surveys at the remaining 617 sites, of which 

only 375 of the surveyed transects contained A. palmata colonies (Figure 4.2).   These 375 

transects contained a total of 2,492 A. palmata colonies, 44 of these transects contained 69 

colonies with WBD (see Table 4.1).   
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Figure 4.2   The locations of the 617 transects surveyed by Mayor et al. (2006).  The light 

grey region surrounding Buck Island (BUIS) represents hard-bottom substrate < 10m deep. 

 

Given that location data had only been recorded for the transects and not for each 

individual colony, colony-level analyses could only be performed by weighting each transect by 

the number of colonies within it.  In order to see what affect, if any, the colony weighting might 

have on the resulting spatial patterns, two versions of Mayor’s original dataset were created: 

first, the “colony-level” dataset in which each transect was “weighted” by the number of A. 

palmata colonies within it; and second, the “transect-level” dataset in which all the transects 

were given the same weight, regardless of the number of colonies within them, a “non-weighted” 

analysis.  Summary statistics for both the transect-level (non-weighted) and colony-level 

(weighted) versions of the dataset are provided in Table 4.1. 

 Artificial Cluster Dataset 4.2.2

I designed the artificial cluster dataset to have similar geographic properties and biologic 

attributes to that of Mayor et al.’s (2006) WBD dataset using the following procedure.  First, the 

Hawth’s Tools extension was used in ArcMap 9.3.1 to generate four random point locations 
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Table 4.1   Presence/Absence information can be obtained from the “Transect-Level Data,” 

which shows the total number of transects surveyed with and without white-band disease (WBD) 

present.  The “Colony-Level Data” provides summary statistics for the A. palmata colonies found 

within each of the transects. 

Transect-Level Data  Colony-Level Data 

Transects containing                   

A. palmata colonies 

Total # of 

Transects 

 

 

Total # of  

Colonies 

# of Colonies per transect 

Min Max Mean S.D. 

with WBD present 44  69 1 6 1.57 1.16 

with no WBD present 331  2,423 1 40 6.48 5.87 

with & without WBD 375  2,492 1 40 6.65 5.99 

 

within the polygon of surveyed habitat (Figure 4.3A), and around which clusters were generated 

in a circle with a pre-defined radius of 50m, 100m, 250m, and 500m.  These radii were chosen in 

order to test the accuracy of the spatial analysis software on detecting clusters of different sizes 

within the same dataset.  The radii were assigned to the cluster centers based on their associated 

Cluster ID number (Figure 4.3B).  Since Mayor’s study found WBD in 44 of the 375 transects 

containing  A. palmata, 11 points were randomly generated within each of the 4 cluster 

boundaries resulting in a total of 44 clustered points (Figure 4.3C).  The transects without WBD 

present were simulated by generating 331 random point locations within the overall study area 

(Figure 4.3D).   The end result was an artificial dataset made up of the same number of 

randomly distributed points as the number of transect locations from Mayor et al.’s (2006) 

dataset, and within the same geographic area (Figure 4.3E).   

A “weighted” version of the artificial dataset was created to simulate the colony-level 

version of Mayor et al.’s (2006) dataset.  To do this the colony-level information from Mayor et 

al.’s transects was blindly assigned to each of the artificial point locations, such that the 44 

artificially clustered point locations would have 69 case events within them and the 331 

randomly distributed control point locations would have 2,423 control events within them.  Thus, 

the descriptive statistics are the same for both the weighted version of the artificial dataset and 

the colony-level version of Mayor et al.’s (2006) dataset shown in Table 4.1. 
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Figure 4.3  Creation of the artificial cluster dataset. (A) First, 4 randomly located cluster 

centers were created within the study area.  (B) Cluster boundaries were then created by 

assigning radii to cluster centers based on the ascending order of their size and ID number’s 

respectively, resulting in the following cluster-radii combinations: cluster 1-50m radius, 2-100m, 

3-250m, and 4-500m.  (C) Next, 11 points were randomly distributed within each of these cluster 

boundaries, resulting in a total of 44 clustered points.  (D) Last, 331 non-clustered points were 

randomly distributed within the study area.  (E) The completed artificial cluster dataset. 
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4.3 Spatial Analysis Software Used 

 ArcGIS 9x and Other ESRI Software
1
 4.3.1

The primary GIS software used throughout this dissertation is the Education Edition of 

ArcEditor 9.3.1.  ArcEditor is one of many products in the ArcGIS Desktop software product line 

developed by Scott Morehouse with the Environmental Systems Research Institute (ESRI), Inc. 

(Ormsby et al. 2001; Longley et al. 2005; Lo and Yeung 2007).  Within ArcEditor, the ArcMap 

application was used to create, analyze, and display the spatial data used throughout this 

dissertation (Maher 2010).  Some of the analyses performed also required the use of ESRI’s 

Spatial Analyst and Geostatistical Analyst extensions, which are included in the Education 

Edition of ArcEditor.  The student edition of ArcView 3.3, which is an older version of the ESRI 

GIS software, was also used in conjunction with the 3x version of the Spatial Analyst extension 

to estimate a few of the statistics used during the analysis performed in Chapter 5. 

ESRI’s software, and the majority of the GIS software associated with it, is designed to 

be used primarily, if not exclusively, on Microsoft Windows-based operating systems.  The 

following are either GIS extensions that can be installed directly into the ArcMap  (or ArcView 

3x) interface, or are stand-alone programs that produce output that can be imported into a GIS 

environment to be projected spatially.   

 CrimeStat 

2
 4.3.2

CrimeStat is a standalone program that was developed to analyze the locations of crime 

incidents (Levine 2007; Levine and Associates 2009).   The National Institute of Justice funded 

the development of this spatial statistics program by Ned Levine and his associates (Curtis and 

                                                 
1 
 ESRI software is available for purchase online at: http://esri.com/products/.                                                       

ESRI also offers discounts for students and educators; as well as, free 60-day trial evaluations of the most recent 

versions of ArcEditor and many of the extensions for ArcGIS Desktop.  Note all of the tools and methods 

described in this dissertation are also available in the newer version of ArcGIS (ArcGIS 10x). 

2
 CrimeStat is publically available as a free download at: http://www.icpsr.umich.edu/NACJD/crimestat.html    

http://esri.com/products/
http://www.icpsr.umich.edu/NACJD/crimestat.html
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Leitner 2006; Levine and Associates 2009).  CrimeStat is not restricted to the type of incidence 

data for which it was created, but rather can be used for any numerator data regardless of 

whether or not there is denominator data included in the dataset.  Table 4.2 provides a 

comprehensive list of the types of analyses offered within the CrimeStat program.  

 

Table 4.2 Types of analysis available in CrimeStat
®

 III   

 

Distance Measurements Interpolation 

  Direct distance * Single variable kernel density interpolation 

  Indirect distance * Dual variable kernel density interpolation 

  Network distance   

  Space-time Analysis 

Spatial distribution  Knox index 

* Mean Center  Mantel index 

* Standard distance deviation  Correlated walk model 

* Standard deviational ellipse   

* Median center Journey-to-Crime Analysis 

* Center of minimum distance  Calibrate Journey-to-crime function 

* Directional mean and variance  Journey-to-crime estimation 

* Convex Hull  Draw crime trips 

 Moran’s I spatial autocorrelation index   

 Geary’s C spatial autocorrelation index Crime Travel Demand: Trip Generation 

 Moran Correlogram  Skewness diagnostics 

   Calibrate model 

Distance Analysis  Make prediction 

  * Nearest neighbor analysis  Balance predicted origins & destinations 

  * Ripley’s K statistic   

 Assign primary points to secondary points Crime Travel Demand: Trip Distribution 

 Within primary file distance matrix  Calculate observed origin-destination trips 

 Between primary & secondary file distance matrix  Calibrate impedance function 

 Between primary file & grid distance matrix  Calibrate origin-destination model 

 Between secondary file & grid distance matrix  Apply predicted origin-destination model 

   Compare observed & predicted origin-destination trips 

Hot spot Analysis   

 Mode Crime Travel Demand: Mode Split 

    Fuzzy mode  Calculate mode split 

 Nearest neighbor hierarchical clustering   

   Risk-adjusted nearest neighbor hierarchical clustering Crime Travel Demand: Network Assignment 

 Spatial & temporal analysis of crime routine (STAC)  Check for one-way streets 

 K-mean clustering  Create a transit network from primary file 

 Anselin’s local Moran test  Network assignment 
 
 

*indicates the specific functions, tools, and types of analyses that are used in this dissertation 

Note: this table was adapted from lists on pages 1.2 – 1.4 of Levine and Associates (2004) CrimeStat III manual.  
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 Disease Mapping and Analysis Program (DMAP)
3
 4.3.3

The Disease Mapping and Analysis Program (DMAP) is a stand-alone program that was 

created by the University of Iowa’s Department of Geography (Rushton and Lolonis 1996; 

Rushton et al. 1996).  DMAP was initially developed to study infant mortality and identify 

possible clustering of infant deaths (Rushton and Lolonis 1996; Rushton et al. 1996).  It has since 

been used in several other types of health and local area investigations (Rushton et al. 2004; 

Curtis and Lee 2010; Curtis et al. 2010; Curtis and Mills 2011; Lentz et al. 2011).  This program 

is designed to smooth the disease-rate surfaces and then identify significant rates of disease 

clustering using Monte Carlo simulations (Rushton and Lolonis 1996; Curtis and Leitner 2006). 

Typical data input requires numerator and denominator location data, in which the 

numerator is the incident or event of interest (i.e. diseased corals) and the denominator is the 

underlying population in which the incident has occurred (Cai et al. 2011).  DMAP first 

aggregates all of the point level data to a circle or “filter” centered on a grid intersection point, 

with the grid covering the entire study area (Figure 4.4).  The numerator (case) and denominator 

(population) points are combined to create a “rate” for each filter.  Here, as in many other types 

of spatial analysis, the term “rate” is not defined using as the commonly accepted definition of 

“amount of change over time.”   Instead, the term is used to describe the frequency of one thing 

relative to another within a given time period (Meade and Earickson 2005), and is calculated as 

      
                                                                          

                                                                       
 , in which the 

“specified place” refers to the space inside a given spatial filter (see Figure 4.4D).   

It is important to note that spatial filters should be large enough to cover multiple-grid 

intersections, allowing for points to be included in multiple rate calculations, and thus smoothing 

the rate surface which eliminates hard (and often artificially defined) aggregation breaks.   

                                                 
3
 
3
 DMAP is publically available as a free download at: http://www.uiowa.edu/~geog/health/index11.html   

http://www.uiowa.edu/~geog/health/index11.html


 

84 

 

Figure 4.4 Illustration depicting how DMAP applies spatial filters to both the numerator 

(case) and denominator (population) data.  Note: this figure was adapted from Figure 3 on page 

721 of Rushton and Lolonis (1996). 

 

Once the rates of disease clustering have been found, a Monte Carlo simulation can be 

done in DMAP to identify any areas with significant rates of disease clustering.  The Monte 

Carlo simulation is based on the actual locations of the real data, with a probability added for 

each healthy individual becoming diseased (this probability was based on the total study area 

disease rate).  A Monte Carlo simulation re-creates this disease surface “n” times (for this study 

n=1,000), creating a simulated distribution against which the actual disease surface is compared.  

If, for example, the disease rate in one filter is actually higher in 990 out of the 1,000 simulation 

runs, one can be 99% confident (equivalent to a p-value of 0.01) that the revealed rate, or 

hotspot, did not occur by chance alone.  

 OpenGeoDa
4
 4.3.4

OpenGeoDa is a standalone program that was developed by Luc Anselin to perform 

exploratory spatial data analysis (ESDA) on lattice data (Anselin 2003; Maguire et al. 2005; 

Anselin et al. 2006a; Leitner and Brecht 2007).  The program was designed to provide it’s users 

                                                 
4 
OpenGeoDa is publically available as a free download at:  http://geodacenter.asu.edu/software 

http://geodacenter.asu.edu/software


 

85 

with an intuitive and interactive path through the following aspects of ESDA: (1) simple 

mapping and geovisualization; (2) spatial data manipulation and transformation; (3) spatial 

autocorrelation; and (4) spatial regression (Anselin 2003; Maguire et al. 2005; Anselin et al. 

2006a; Leitner and Brecht 2007).  Table 4.3 provides a more comprehensive list of the analytical 

categories, as well as, the functions associated with each category (Anselin et al. 2006a).    

Unlike many of the other GIS programs currently available, OpenGeoDa was designed to 

provide its users with a uniquely interactive environment that combines maps with statistical 

graphics through its use of dynamically linked windows (Anselin 2003; Maguire et al. 2005; 

Anselin et al. 2006a; Leitner and Brecht 2007).   

It is also important to note that the analyses provided in OpenGeoDa are intended to be 

used with lattice data (Anselin 2003), which is when observations are represented as continuous 

polygonal surface made up of discrete spatial objects.  Discrete data refers to areas in which 

there is no uncertainty regarding their location (such as the polygonal representation of states or 

counties), as opposed to point-based event or sample locations which generally have less 

certainty as to their exact location (Maguire et al. 2005) 

 Hawth’s Tools Extension
5,6

 4.3.5

Hawth’s Tools is a free extension for ESRI’s ArcMap (Beyer 2004).  The extension was 

developed by Hawthorne Beyer, and designed to provide users (primarily ecologists) with 

numerous types of spatial analyses and functions that tend to be more difficult to perform using 

the functions provided by default in ArcMap (Beyer 2004).    Table 4.4 provides a 

comprehensive list of the tools and functions provided by the extension.   

                                                 
5
 
5
 Hawth’s Tools is a free ArcMap extension & is available for download at: http://www.spatialecology.com/htools/     

6
 
6
 During the writing of this dissertation Hawth’s Tools became a legacy product. Given that the extension is no 

longer being updated and will soon be formally discontinued, it is not supported in the newest version of 

ArcGIS 10x.  This extension has been replaced by a new software package called the “Geospatial Modeling 

Environment” (GME), which offers all the same tools but in a more flexible environment. GME is a free stand-

alone program & is available for download at: http://www.spatialecology.com/GME/     

http://www.spatialecology.com/htools/
http://www.spatialecology.com/GME/
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Table 4.3   Analytical Categories and Functions available in OpenGeoDa 

Category Functions 

Spatial Data *  data input from shape file (point, polygon) 

 data input from text (to point or polygon shape) 

 * data output to text (data or shape file) 

 create grid polygon shape file from text input 

 centroid computation 

 * Thiessen polygons 

  

Data Transformation variable transformation (log, exp, etc.) 

 queries, dummy variables (regime variables) 

 variable algebra (addition, multiplication, etc.) 

 spatial lag variable construction 

 rate calculation and rate smoothing 

 data table join 

  

Mapping generic quantile choropleth map 

 standard deviational map 

 percentile map 

 outlier map (box map) 

 circular cartogram 

 map movie 

 conditional maps 

 smoothed rate map (EB, spatial smoother) 

 excess rate map (standardized mortality rate, SMR) 

  

Exploratory Data Analysis   histogram 

(EDA) * box plot 

 * scatter plot 

 parallel coordinate plot 

 three-dimensional scatter plot 

 conditional plot (histogram, box plot, scatter plot) 

  

Spatial Autocorrelation * spatial weights creation (rook, queen, distance, k-nearest) 

 higher order spatial weights 

 spatial weights characteristics (connectedness histogram) 

 Moran scatter plot with inference bivariate Moran scatter plot with inference 

 Moran scatter plot for rates (EB standardization) 

 * Local Moran significance map 

 * Local Moran cluster map 

 * bivariate Local Moran 

 Local Moran for rates (EB standardization) 

  

Spatial Regression OLS with diagnostics (e.g., LM test, Moran’s I) 

 Maximum likelihood spatial lag model 

 Maximum likelihood spatial error model 

 predicted value map 

 residual map 

*indicates the specific functions, tools, and types of analyses that are used in this dissertation 

Note: the above table is adapted from Table 1 on page 9 of Anselin et al. (2006a) 

 

file:///C:/Users/Jenny/Desktop/Graduate_Research/Manuscripts/Dissertation/Dissertation%20Figures%20&amp;%20Tables/Figures%20&amp;%20Tables%20in%20Dissertation%20(10-04-2011).docx%23Table_4_1
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Table 4.4  Analytical tools and functions provided by the Hawth’s Tools extension  

Analysis Tools Raster Tools 

 Intersect Point Tool  Clip Raster 

 Distance Between Points (within Layer)  Clip Raster By Polygons 

 Distance Between Points (between Layers)  Landscape Characterization (fast) 

 Count Points In Polygons  Extract Raster Edge 

 Polygon In Polygon Analysis  Thematic Raster Summary (by polygon) 

 Sum Line Lengths in Polygons  Zonal Statistics ++ (by polygon) 

 Line Raster Intersection Statistics  Spatial Replace Tool 

 Enumerate Intersecting Features  Maximum Grid Separation Tool 

 Line Metrics  Cellular Automata (1D x Time) 

   Grid Spread (Cellular Automata) 

Sampling Tools  Raster Pixel Type Conversion 

 Create Random Selection   

 Random Selection Within Subsets Table Tools 

  *Generate Random Points  Add Area Field To Table 

 Generate Regular Points  Add Length Field To Table 

 Conditional Point Sampling Tool  Add XY To Table 

  *Create Vector Grid (lines/polygons)  List Unique Values 

 Create Sample Shapes (various shapes)  Sum Values 

 Generate Random 3D Points  Delete Multiple Fields 

   Add XY Line Data (creates line layer) 

Animal Movements  CSV Management Tool 

 Create Minimum Convex Polygons   

 Calculate Movement Parameters Vector Editing Tools 

 Convert Locations To Paths  Create Buffers (Retain Attributes) 

 Convert Paths to Points  Vector Rotation and Shifting Tool 

 CRW Simulation I  Snap Points To Lines Tool 

 CRW Simulation II  Intersect Lines (Make Points) 

   Split Vector Layer By Unique Value Field 

Kernel Tools   

 Fixed Kernel Density Estimator Specialist Tools 

 Batch Fixed Kernel Density Estimator  River Sample Extraction 

 Percent Volume Contour  Point Redistribution Tool 

   PLSS Point Finder 

Other Tools  Julian Day Lookup 

 Digitize XY Coordinates   

 Set/Zoom To View Extent Bookmark   

 

*indicates the specific functions, tools, and types of analyses that are used in this dissertation 

Note:  this table is adapted from the list provided by the developer of the extension, Hawthorne Bayer;                         

available online at: http://www.spatialecology.com/htools/tooldesc.php 

http://www.spatialecology.com/htools/tooldesc.php
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 Home Range Extension (HRE)
7
 4.3.6

The Home Range Extension (HRE) is a free extension for ESRI’s ArcView 3x (Rodgers 

and Carr 1998).  The extension was developed by Arthur Rodgers and Angus Carr and funded by 

the Center for Northern Forest Ecosystem Research at the Ontario Ministry of Natural Resources 

(Rodgers and Carr 2002).  HRE was designed to enable and facilitate the study of the home 

ranges of animals in ArcView through the use of minimum convex polygons (MCPs) and 

different types of kernel analyses (Rodgers and Carr 2002). 

 SaTScan
8
 4.3.7

SaTScan is a stand-alone program that was developed by Martin Kulldorff to analyze 

spatial, temporal, and spatio-temporal data of health events using scan statistics (Curtis and 

Leitner 2006; Kulldorff 2006).  The program was designed to: (1) map diseases; (2) detect 

possible spatial, temporal, or spatio-temporal clustering of a disease and determine whether or 

not the clustering is statistically significant; (3) determine if a disease is randomly distributed in 

space or time; (4) predict the locations of future disease outbreaks through the use of prospective 

analyses (Kulldorff 2006; Kulldorff 2010).   

SaTScan uses a number of models depending on the type of data being analyzed  (Table 

4.5).  A grid file encompassing the overall study area may be specified, as was the case in 

DMAP; or if no grid is specified the locations of the denominator data (coral locations) will be 

used to define the centroids of the spatial scan statistics (Kulldorff 2006).   Next a circular 

window will be used by the spatial scan statistic to search the entire study area, centering on each 

grid point with a radius extending outwards (Wang 2006).  The radius of the scanning window is  

                                                 
7 
Home Range Extension (HRE) is a free ArcView 3x extension that is publically available for download at: 

http://flash.lakeheadu.ca/~arodgers/hre/ or http://blue.lakeheadu.ca/hre/   

8 
SaTScan is publically available as a free download at: http://www.satscan.org 

http://flash.lakeheadu.ca/~arodgers/hre/
http://blue.lakeheadu.ca/hre/
http://www.satscan.org/
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Table 4.5  The eight different Probability Models provided in SaTScan  

Probability Model Description 

* Poisson Model 

(Discrete-version) 

The discrete Poisson model should be used when the background population reflects a certain 

risk mass such as total person years lived in an area. The cases are then included as part of the 

population count.  

*Bernoulli Model The Bernoulli model should be used when the data set contains individuals who may or may not 

have a disease and for other 0/1 type variables. Those who have the disease are cases and 

should be listed in the case file. Those without the disease are 'controls', listed in the control 

file. The controls could be a random set of controls from the population, or better, the total 

population except for the cases. The Bernoulli model is a special case of the ordinal model 

when there are only two categories.  

Space-Time 

Permutation Model 

The space-time permutation model should be used when only case data are available, and when 

one wants to adjust for purely spatial and purely temporal clusters.  

Multinominal 

Model 

The multinomial model is used when individuals belong to one of three or more categories, and 

when there is no ordinal relationship between those. When there are only two categories, the 

Bernoulli model should be used instead.  

Ordinal Model The ordinal model is used when individuals belong to one of three or more categories, and when 

there is an ordinal relationship between those categories such as small, medium and large. 

When there are only two categories, the Bernoulli model should be used instead.  

Exponential Model The exponential model is used for survival time data, to search for spatial and/or temporal 

clusters of exceptionally short or long survival.  The survival time is a positive continuous 

variable. Censored survival times are allowed for some but not all individuals.  

Normal Model The normal model is used for continuous data.  Observations may be either positive or negative.  

Continuous      

Poisson Model 

The continuous Poisson model should be used when the null hypothesis is that observations are 

distributed randomly with constant intensity according to a homogeneous Poisson process 

over a user defined study area.  

* Indicates the specific probability models that are used in this dissertation. 

Note: the above information provided in the Description column was taken directly from page 45 of Kulldorff’s 

most recent SaTScan User’s Guide (Kulldorff 2010). 

 

continuously changing from 0 to the upper limit specified by the user (Kulldorff 2006; Wang 

2006).  The analysis will ultimately create an infinite number of circles, with each circle 

representing a possible coral disease cluster.  These clusters are determined by the spatial scan 

statistics estimation of whether there is a statistically significant risk of coral disease inside each 

circle. 
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 XTools Pro 8.0 Extension
9
 4.3.8

XTools Pro is a free extension for ESRI’s ArcMap.  XTools Pro is a shareware extension 

designed by Data East, LLC.  The extension is designed to provide its users with a 

comprehensive set of tools for the spatial analysis of vector-based data, shape conversions, table 

management; and various geoprocessing tools (see Table 4.6).   

 

Table 4.6  Analytical tools and functions provided by the XTools Pro 8.0 extension 
 

  Data Management Tools Surface Tools 

 Create Feature Class/Table   Convert Grid to Contour 

 Create File OpenGeoDatabase   Extract Raster Values 

 Create Personal OpenGeoDatabase   Create Grid from Contours 

 Delete Dataset   *Create Grid from Points 

 Change Datasources   *Build Thiessen Polygons 
    

  Feature Conversions Go To tools 

 Transfer/Convert Features  Go to Google Maps 

 Convert Multipart Shapes to Single Parts  Go to Google Earth 

 Convert Polygons to Polylines  Go to Microsoft Bing Maps 

  *Convert Features to Points  Go to ArcGIS Explorer 

 Make Polygons from Polyline   

 Make Polygons from Points Miscellaneous General Usage Tools 

 Make Polylines from Points  Open Attribute Table 

 Convert Graphics to Shapes  Smart Add Data 

 Shapes to Centroids  Show Nodes 

 Split Polylines or Polygons  Convex Hull 

 Smooth Polylines  Extract Map 

 Split Layer by Attributes  Create Fishnet 

   Identify Pro 

Layer Operations  Feature Report 

Create Intersection Points            Start Editing Selected Layer 

 Erase Features                             Show Directions 

 Identity  Export Data to KML 

 Update Polygon Layer  Auto Save MXD 

   Callout Identify 

Table Operations  Import Data from KML 

    *Calculate Area, Perimeter,   Catalog tab & Catalog dockable window in ArcMap 

 Length, Acres and Hectares  Edit Metadata 

 Add XYZ Coordinates  View Metadata 

 Aggregate Features/Records  Synchronize Metadata 

 Table Restructure  MXD Info 

 Export Data to MS Excel  Multiple Map Layouts  

 MultiDelete Fields  Copy Layer Properties 

 Table Statistics   

 Export Table to Text or to HTML   

 Find duplicates   

 Sort Features/Records   
 

*indicates the specific functions, tools, and types of analyses that are used in this dissertation 

Note: this table is adapted from the list provided on the X Tools Pro website: http://www.xtoolspro.com/tools.asp#crt  

                                                 
9
 
9
 XTools Pro is a free ArcMap extension that is publically available for download at: http://www.xtoolspro.com/                  

http://www.xtoolspro.com/tools.asp#crt
http://www.xtoolspro.com/
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Chapter 5. Performing Exploratory Spatial Data Analysis on the 

Artificial Dataset 

“Because so many marine invertebrates, especially corals, are 

sessile, the use of spatial distributions of diseased and dead 

animals has the potential to become an important tool in 

uncovering mechanisms of transmission, disease spread, and  the 

role of host resistance in patterns of mortality from disease.”                    

– Jolles et al. (2002) 

5.1 Introduction to Exploratory Spatial Data Analysis (ESDA) 

A typical spatial epidemiological investigation would employ an exploratory analysis 

whereby patterns are identified.  This allows for potential associations to be identified and for 

more traditional hypotheses to be tested.  Exploratory spatial data analysis (ESDA) is an 

important component of GIS based investigations of disease.  This is in part due to the large 

amounts of spatial data that may be important in identifying disease presence, and partly because 

of the unknown spatial characteristics of many disease systems (Anselin 1995; Fotheringham 

1998; Anselin 2003; Curtis et al. 2010; Ratcliffe 2010).  For example, clusters of diseased 

individuals (hotspots) revealed during the ESDA can also be further examined using more 

traditional epidemiological methods to investigate the epidemiology, etiology, pathology, and 

pathognomy of the disease (Berke 2004).  This hotspot-to-causation approach enables a more 

comprehensive and less subjective way for epidemiologists to examine the spatial aspects of both 

the disease transmission and infection rates (Chaput et al. 2002). 

The six most common categories of ESDA are as follows: (1) Mapping and Visualizing 

the data; (2) Point Pattern Analysis; (3) Spatial Filtering and Smoothing; (4) Spatial Scan 

statistics; (5) Spatial Autocorrelation; and last (6) Spatial Regression.  While it is usually a good 

idea to perform more than one type of analysis on a given dataset, it is often not practical, or 

appropriate, to perform numerous types of analysis from each of the above categories.  For this 
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reason, one of the objectives of this dissertation is to develop several analytical protocols, which 

can be used by researchers throughout the world to study coral health.  Specifically these 

protocols will be designed for researchers with little to no background in GIS and/or spatial 

analysis.  Ultimately, my goal is to provide researchers with the necessary tools and information 

needed to perform the most accurate and powerful types of geospatial analysis possible based on 

the data they have available.   

Developing the different protocols required not only a thorough background on each of 

the ESDA categories, but also the individual types of analysis within each category.  I also 

needed to understand how the choice of different program settings and/or spatial parameters 

would influence the accuracy of the resulting analysis.  However, without a priori knowledge of 

the spatial nature of the given coral disease, I would be unable to determine the accuracy of the 

different analyses and a limited ability to assess their strengths and weakness.  For this reason, all 

of the initial exploratory analyses were performed on an artificial dataset with known cluster 

locations.  The use of an artificial dataset should enable not only better assessment of the 

accuracy of the various cluster detection techniques used by each of the different types of 

geospatial analysis; but also, study how spatial scale influenced the results of various types of 

analysis.  Additionally, given the design of the artificial dataset (see the previous chapter for a 

detailed explanation), I should be able to use the artificial dataset to calibrate the different types 

of analysis to perform optimally on Mayor et al.’s (2006) coral disease data.   

The following sections provide detailed explanations of the six ESDA categories.  Each 

section will begin with a general description of the category, including the purpose, general 

utility, and potential applications for coral disease studies.  The types of spatial analysis 

generally associated with this category are then listed and explained in varying levels of detail – 

with more detailed information provided for the types of analysis that were used in this 
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dissertation.  Analyses that were not performed in this dissertation, but have the potential to be 

important in other coral disease studies, are also described here, but in much less detail.  Each 

section will also contain the specific methods used to perform the given analyses on the artificial 

dataset.   

5.2 Mapping and Visualizing Data Methods 

 Introduction, Purpose, and Importance of the Techniques in This Category 5.2.1

The first step in many types of exploratory analysis often involves various types of 

visualization techniques because they facilitate the detection of underlying patterns and trends in 

the data.  Bailey and Gatrell (1995) refer to this “ability to be able to ‘see’ the data being 

analyzed” as an “essential requirement” in any analysis.  They go on to describe these graphical 

methods of displaying data as the “fundamental tools of the analyst concerned with seeking 

patterns in data, generating hypotheses and assessing the fit of the proposed models, or the 

validity of predictions derived from them” (Bailey and Gatrell 1995; page 22).   

When dealing with spatial data, maps are one of the most common and powerful 

graphical visualization methods available.  Maps are defined as “any graphical representation of 

geographic or spatial information” (Wade and Sommer 2006).  Using this definition, maps can 

be considered “the spatial analysts’ equivalent to the invaluable scatter plot in non-spatial 

analysis” (Bailey and Gatrell 1995; page 22).  Maps allow the spatial distribution of phenomena 

(such as the locations of disease corals) to be visually observed (Câmara et al. 2008).  In 

addition, showing where an event is occurring may also provide insight as to why the event is 

occurring  (Waller and Gotway 2004).   

The concept of medical geography developed out of a long history of scientists using 

maps as tools for detecting potential “causes” of various diseases  (Waller and Gotway 2004).  A 

popular historical example is Dr. John Snow’s legendary map of Cholera deaths clustered around 



 

94 

a water pump in the mid-1800s (Waller and Gotway 2004; Câmara et al. 2008).  A less well 

known example is Dr. Theobald Palm’s use of maps to link the geographic distribution of rickets 

(a disease caused by vitamin D deficiency) to urban areas with cold wet climates in the late 

1800s, (Hardy 2003; Waller and Gotway 2004).  More recently, in the mid 1900’s, Dr. Harold F. 

Blum studied the geographic distribution of disease cases leading him to deduce sunlight as a 

casual factor of skin cancer (Waller and Gotway 2004).  

 Map Types 5.2.2

Just as there are numerous graphical techniques for displaying non-spatial data (graphs, 

box plots, scatter plots, etc.), there are also a number of types of mapping and visualization 

options for displaying spatial data (Bailey and Gatrell 1995; Waller and Gotway 2004).  Data of 

observed locations can be represented as points, in which the x,y coordinates mark the location of 

the  event; or as polygons, in which the x,y coordinates represent the centroid of the surrounding 

polygon (Anselin 2003).  Visualization options for both the map and the representation of the 

data locations within the map should be based on the nature of the data, the type of study, and the 

overall purpose of the map (i.e. what message is the map intended to convey).  In many cases, it 

may be best to try several options and compare the results (Waller and Gotway 2004).  

Additionally, most of the various types of spatial analysis techniques require the input data be in 

either point or polygon form.  For example, the types of analysis used in the Point Pattern 

Analysis, Spatial Filtering and Smoothing, and Spatial Scan Statistic ESDA categories usually 

require the input data to be in point form.  Whereas, the analyses in the Spatial Autocorrelation 

and Spatial Regression categories usually require the input data be a in the form of a continuous 

polygonal surface (more commonly referred to as “lattice data” or “discrete spatial objects”).   

One of the most common ways of transforming point data into a continuous polygonal 

surface is to create Thiessen Polygons (Bailey and Gatrell 1995; Anselin 2003; Wade and 
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Sommer 2006).  These polygons are created by taking point data and constructing polygons 

around each point such that each point now has a polygon associated with it (see Figure 5.1).  

OpenGeoDa, the XTools Pro extension, and some versions of ArcMap, have tools that can be 

used to transform points to polygons by generating Thiessen Polygons, as well as, converting 

polygons to points in which each point represents the center of the associated polygon.  

 

 

Figure 5.1  Transforming point data into a continuous polygonal surface using Thiessen 

Polygons.  The point locations (left image) are used to construct Thiessen Polygons such that 

each point is encompassed by a polygon (center image).  The polygonal surface is then “clipped” 

to the boundaries of the study area (image on the right). 

 

 Mapping and Visualization Techniques Performed on the Artificial Dataset 5.2.3

The two most common methods of displaying spatial data in a GIS were compared by 

displaying the artificial dataset as point data in one map and a continuous polygonal surface in 

the other.  In both display methods, the case (artificially clustered) and control (artificially non-

clustered) locations were differentiated using the colors red and green respectively.  Solid colors 

were used to depict the non-weighted (case and control locations) versions of the artificial 

dataset; while gradients of the same two colors were used to depict the weighted versions, with 

darkening shades indicating the presence of an increased number of individual case or control 

events at a given location.  Additionally, the size of the point symbols used to depict the 

weighted event locations were also scaled to reflect the number of individuals present.   
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5.3 Point Pattern Analysis (PPA) Methods 

 Introduction, Purpose, and Importance of the Techniques in This Category 5.3.1

While the importance of visualizing the spatial distribution of point patterns was 

recognized early on, as was shown by the historical medical applications mentioned in the 

previous section, it was not until the 1950s and 1960s that researchers began to seek out methods 

for statistically analyzing these spatial patterns (Gatrell et al. 1996).  Despite the diagnostic 

breakthroughs that had been made by simply mapping disease occurrences, the first techniques to 

analyze spatial point patterns were developed not by the medical community, but rather by plant 

ecologists (Gatrell et al. 1996).  During the 1960s and 1970s researchers from other disciplines 

began adopting some of these methods for describing and studying plant distributions, and 

applying them to other fields of study, such as urban planning (Gatrell et al. 1996).  These early 

types of spatial analysis were limited by the technology available at the time and in large part 

had to be computed by hand.  Most of the analyses were either centrographic or distance-based 

statistics that used physical distance measurements to characterize the overall spatial distribution 

of the points (Haggett et al. 1977; Gatrell et al. 1996).   

 Common Types of PPA 5.3.2

Most types of point pattern analysis (PPA) are designed for the analysis of just location 

data, rather than or in addition to attribute data.  For this reason PPAs are often performed only 

on data regarding the “case” events, without taking into account the spatial distribution of the 

“control” events (where the events of interest are not occurring), or the distribution of the 

underlying population (both case and control events).    

The general objective of PPA is to describe the overall pattern in the spatial distribution 

of the point locations (Figure 5.2).  For example, Bo the points appear to have a more clustered, 

dispersed, or random spatial distribution?   Where is this spatial pattern generally occurring?   
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Figure 5.2  Visual examples of common types of spatial distribution patterns for point data.  

Note: the above figure was adapted from Figure 10.3 on page 381 of Lo & Yeung 2007. 

 

Does the pattern change when the data are analyzed and/or sampled at different geographic 

scales? 

Since many types of spatial analysis deal with point data, they are often included under 

the PPA category.  For example, the following types of analysis deal with point data and are 

sometimes referred to as “point pattern analyses”: different mapping & visualization techniques; 

centrographic and distance statistics; spatial filtering, smoothing, and interpolation methods 

(including kernel density estimates); spatial scan statistics; and some spatial autocorrelation 

methods.  For clarity purposes only centrographic and distance statistics will be included under 

the PPA category; the other analyses will each be described as their own ESDA category.  

 Centrographic PPA Statistics 5.3.2.1

Centrographic statistics are types of descriptive spatial statistics designed to show the 

location and distributional area of the overall point patterns (Levine and Associates 2004; 

Tabangin et al. 2010).  While the types of analyses included under this heading do contain 

locational information, they are often referred to as “global” statistics rather than “local” 
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statistics (Chainey and Ratcliffe 2005; Tabangin et al. 2010).  This is because, centrographic 

statistics are used to summarize the similarities in the spatial distributions of points rather than 

the localized differences (see Table 5.1).   

 

Table 5.1  The difference between “Global” Spatial Statistics and “Local” Spatial Statistics 

Global Spatial Statistics Local Spatial Statistics 

Used to emphasize the similarities over space 

Used to search for region-wide trends 

Spatial distribution is assumed to be homogeneous 

Results are often non-spatial (not-mappable)  

Results are usually single-value statistics 

Used to emphasize the differences over space 

Used to search for local exceptions or hotspots 

Spatial distribution is assumed to be heterogeneous 

Results contain spatial output (mappable) 

Results are usually multi-value statistics 

Note: the above table has been adapted from Table 5.1 on page 94 of Fotheringham et al. (2000), and Table 1.1              

on page 6 of Fotheringham et al. (2002). 

 
The following are common types of centrographic spatial statistics: 

Minimum Convex Polygons (MCPs), also referred to as “Convex Hull” polygons, are 

polygons which represent the external boundary of a point distribution.  MCPs are created by 

connecting the outermost points in a spatial pattern, thus the completed polygon serves as the 

border or perimeter of the points.  MCP estimates are quite common in animal movement 

studies, because they are the oldest and simplest method for calculating the home range of a 

given animal (Plummer 2003; Lentz 2005).    

Mean and median center statistics are used to find the central focal point within a given 

spatial distribution.  Mean center statistics (such as the Harmonic Mean, Geometric Mean, and 

the Mean Center) are generally calculated as the means of the x and y coordinates (Levine and 

Associates 2004; Smith and Bruce 2008; Tabangin et al. 2010).  In a similar fashion, the Median 

Center is calculated as the median of the x and y coordinates, which can be of use when spatial 

outliers are influencing the Mean Center.    Mean Center of Minimum Distance is the “point at 

which the sum of the distance to all other points is the smallest” (Smith and Bruce 2008).  In 
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spatial crime analysis, the mean center of minimum distance statistic is often the “single best 

predictor” of where a serial offender lives, and consequently tends to be more useful than either 

the mean or median centers (Smith and Bruce 2008).  Standard distance and deviation statistics 

(such as the Standard Distance Deviation, Standard Deviation of the X & Y Coordinates, and 

Standard Deviational Ellipse statistics) are often used in conjunction with the mean and median 

centers to estimate the general distribution of the data around the central focal point (Gatrell et 

al. 1996).   

 Distance PPA Statistics 5.3.2.2

Distance statistics are generally used to test hypotheses regarding the spatial distribution 

of points.  The following are the two most common types of distance PPA statistics: Nearest 

Neighbor Analysis (NNA); and the Ripley’s K statistic.  Both are used to examine “spatial 

dependence” (clustering or dispersion of points) and are also considered “global” statistics, but 

unlike centrographic statistics, neither the NNA nor the Ripley’s K statistic have spatial output.   

Nearest Neighbor Analyses (NNA) are used to examine spatial dependence and determine 

whether the points in a given spatial distribution are more clustered or dispersed than would be 

expected to occur through chance alone (Smith and Bruce 2008).  This technique begins by 

measuring the distance between each point and the point closest to it (its “nearest neighbor”).  

The mean of these nearest neighbor distances is then calculated.  The estimated (or “observed”) 

mean nearest neighbor distance is then compared to the mean distance that would be expected 

based on a random spatial distribution (Smith and Bruce 2008).  The result of this comparison is 

the Nearest Neighbor Index (NNI).  NNI < 1 suggests the points are more aggregated (clustered), 

while NNI > 1 indicates the points are more dispersed than would be expected through chance 

alone, and an NNI = 1 indicates “Complete Spatial Randomness” (CSR) in the observed spatial 

distribution (Bailey and Gatrell 1995; Smith and Bruce 2008).  
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The Ripley’s K statistic is a global PPA and spatial autocorrelation statistic, which is used 

to examine the extent of spatial dependence across several distances (Lentz et al. 2011).  In many 

types of spatial analysis, the scale or resolution of the data tends to have a strong influence on the 

appearance of the resulting analyses.  The Ripley’s K statistic can be used to study how the 

spatial dependence present within a given set of points changes across multiple distances (Bailey 

and Gatrell 1995; Lentz et al. 2011).   

Most studies which use the Ripley’s K statistic, calculate the statistic be using the 

following linear transformation of the K-function:  
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where n is the total number of point locations, k is the number of events (or individuals) present 

at each location, A is the size of the study area, and d is the distance over which the spatial 

autocorrelation is being tested (Bailey and Gatrell 1995; Lancaster and Downes 2004; Wiegand 

and Moloney 2004; Marcon and Puech 2009; Lentz et al. 2011).  Spatial dependence is visually 

assessed by plotting the resulting Observed and Expected K values (L(d) and d, respectively) 

values against distance values (Figure 5.3).  The Expected K values (d) represent the null 

distribution of complete spatial randomness (CSR), also referred to as the “Poisson distribution.” 

By plotting both the Observed and Expected K values on the same graph, the Expected K values 

can be used to test the spatial distribution of the Observed Ks against the null distribution of 

CSR.  Spatial clustering is indicated by the presence of Observed K values above the line of 

Expected K values, while observed values that fall below this line indicate spatial dispersion, and 

observed values that fall along this line indicate random spatial distribution (Figure 5.3). Unlike, 

the other PPA statistics, the spatial distribution of the underlying population at risk can also be 

accounted for through the use of the difference function (D).     
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Figure 5.3 How to interpret Ripley’s K plots  

 

 PPA Performed on the Artificial Dataset 5.3.3

CrimeStat III  was used to calculate all of the centrographic statistics and to perform the 

Nearest Neighbor distance statistical analyses on the artificially clustered point locations (i.e. 

non-weighted case locations).  These analyses were performed solely on the non-weighted 

artificial case data, because none of these statistics are designed to incorporate attribute 

information into their estimates.  Thus, given that only the latitude and longitudinal data are 

being examined, the results would be the same for both the non-weighted and weighted versions 

of the dataset.  Further, since these analyses are not designed to examine or compare more than 

one spatial distribution, the analyses were only performed on the case data, because what I am 

most interested in is their ability to correctly identify and detect the artificially defined clusters.  

The spatial results from the centrographic analyses were brought into ArcMap to be displayed 

and compared visually; while the results of the NNA were summarized using tables and graphs. 

The Ripley’s K analyses were all performed using the “Multi-Distance Spatial Cluster 

Analysis (Ripley’s k-function)” tool in ArcMap’s spatial statistics toolbox.  Ripley’s K estimates 

were performed on both the weighted and non-weighted versions of the artificial case and 

artificial population data.  Each of the Ripley’s K analyses (4 in total) examined distances 
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ranging from 0 – 1000m, in 50m intervals, and calculated 99.9% upper and lower confidence 

intervals by performing 999 permutations.   The results of these analyses were then brought into 

an Excel spreadsheet to be analyzed.  Normalized and non-normalized ([L(d)-d] and [L(d)], 

respectively) Ripley’s K plots were generated for the weighted and non-weighted versions of the 

case and population data.  Last, the difference function (D) was used to test additional 

hypotheses regarding the spatial distributions of the case and population data.  

5.4 Spatial Filtering and Smoothing Methods 

 Introduction, Purpose, and Importance of the Techniques in This Category 5.4.1

Since it was first introduced in the early 1950s (Fix and Hodges 1951; Silverman and 

Jones 1989), Kernel density estimation (KDE) has become one of the “most popular” statistical 

methods for analyzing both univariate and multivariate data (Danese et al. 2008).   KDEs were 

first developed to “obtain a smooth estimate of a univariate or multivariate probability density 

from an observed sample of observations” (Bailey and Gatrell 1995).  In the early 1980s, the 

spatial applications of KDEs started to become apparent (Diggle 1983,1985; Danese et al. 2008).  

Today, KDE are one of the most common types of analysis used to study spatial data.  These 

spatial density estimates are often computed using a process known as “spatial filtering,” a type 

of non-parametric, graphical analysis which calculates the predicted value at a given point based 

on the values of the surrounding data points (Carlos et al. 2010; Cai et al. 2011).  These spatial 

filters, which are also referred to as “disk smoothers” or “punctual kriging,” are used to smooth 

some of the variability and noise in the dataset without losing the local features of the data, 

resulting in the creation of smooth, continuous maps of density estimates (Waller and Gotway 

2004; Anselin et al. 2006b; Carlos et al. 2010; Cai et al. 2011).  One of the most common 

methods of spatial filtering involves the use of probability distribution functions, known as 

“kernels” (Danese et al. 2008). 
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 Spatial Kernels and How They Are Used by Spatial Filters to Smooth Data 5.4.2

Spatial filtering is a form of data smoothing in which a three-dimensional kernel 

probability function moves across the study area filtering and smoothing the underlying point 

data as it goes.  In order to create a continuous spatial density estimate, or density “surface,” a 

fine grid is placed over the entire study area, depending on what type of software is being used 

the kernel function is either centered on each data point (CrimeStat) or centered on each node of 

the grid (DMAP), performing density estimates on the individual point data located in the pre-

defined filtering area.  This process is described in more detail in the following sections. 

 Spatial Kernels 5.4.2.1

Kernels are hump-shaped bins placed over each data point (as shown in Figure 5.4A), or 

conversely over each grid point.  The area over which the kernel probability function is applied 

is defined by the size of the bin’s radius (h), usually referred to as either “bandwidth” or “filter 

radius” (Fotheringham et al. 2000,2002).  Generally the larger this bandwidth, the more data 

points are included, and the “smoother” the resulting density map (Williamson et al. 1998,1999; 

Carlos et al. 2010; Curtis et al. 2010).  A visual inspection of these density maps will reveal areas 

of high disease intensity worthy of subsequent investigation.  The shape of the hump (Figure 

5.4B) indicates how the non-parametric filtering statistic will be applied to the data within the 

filter radius (Danese et al. 2008).  For example, spatial kernels with quartic distributions will put 

the most weight on the data points closest to the grid point in which the spatial filter is being 

applied;  whereas, spatial kernels with uniform distributions will weight all of the data points 

within the filter radius equally (Levine and Associates 2004; Smith and Bruce 2008).    

 Single Kernel Density Estimates (KDEs) vs. Dual KDEs 5.4.2.2

KDEs can be performed as a univariate analysis of a given set of point locations, or as a 

multivariate analysis of two sets of point locations.  The former type of analysis is referred to as 
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a “single” KDE and is most commonly performed on data regarding the locations of case events, 

while, the latter is referred to as a “dual” KDE and can be used on various types of “numerator” 

and “denominator” data.  “From an epidemiological perspective, kernel estimation is of most 

value in estimating the intensity of one type of event relative to another” (Carlos et al. 2010).  

Such as, comparing the spatial densities of case locations to that of the underlying population at 

risk; comparing case and control locations; or even case events to a different type of case events 

using an additive or subtractive dual kernel model (Levine and Associates 2004; Smith and 

Bruce 2008).  When population data are available, dual kernels make it possible to differentiate 

“real” case clusters and areas (or periods of time) at greater risk (Bithell 1990; Waller and 

Gotway 2004; Carlos et al. 2010).  Conversely,  single KDEs of just case data run the risk of 

identifying false clusters resulting from underlying population dynamics (Bithell 1990; Rushton 

and Lolonis 1996; Levine and Associates 2004; Waller and Gotway 2004; Anselin et al. 2006b; 

Smith and Bruce 2008; Carlos et al. 2010). 

 Fixed Distance vs. Adaptive Distance Kernels 5.4.2.3

As described earlier the area over which the spatial kernel is applied is defined by the size 

of the filter radius, or, as it is more commonly referred to, “bandwidth.”  The size of the 

bandwidth can be defined in one of two ways: either as a fixed distance (Figure 5.4C), or as the 

number of points to be sampled by each filter (Figure 5.4D).  There are pro’s and con’s 

associated with both fixed and adaptive KDEs.  When the primary concern of a study is distance, 

static bandwidths are often more appropriate because the resulting output can be used to define 

areas of increased risk of exposure based on distances (Carlos et al. 2010).  Distance-based 

kernels are also preferred in situations where a priori information suggests an appropriate 

distance; for example, studies of vector-based diseases might set the bandwidth to the average 

distance traveled by the vector.   



 

105 

 

Figure 5.4  Cross-sections of different types of spatial kernels: (A) diagram depicting the 

general anatomy of a kernel-based spatial filter; (B) the five most common types of spatial kernel 

distributions; (C) fixed distance (static) bandwidth spatial kernels; and (D) adaptive distance 

spatial kernels.  Note the above figure is based on the following sources: Figure 3.4 on page 86 

of Bailey and Gatrell (1995); Fotheringham et al. (2002)’s Figures 2.11 and 2.13 on pages 45 and 

47 respectively; Figure 3.2 on page 37 of Wang (2006); pages 67-68 of Smith and Bruce (2008); 

and Figure 4-47 on page 177 of de Smith et al. (2009). 
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There are two main problems associated with using fixed distance bandwidths: the first is 

that spatial filters with a fixed size treat high and low density areas the same; and the second, is 

the user must define the size of the bandwidth (Tiwari and Rushton 2005).   Adaptive 

bandwidths address both problems to varying degrees.  Unlike fixed-distance kernels, adaptive 

KDEs base the size of the bandwidth on the number of point locations rather than geographic 

distance, and are therefore, less likely to over or under smooth areas with high or low underlying 

population densities (Gatrell et al. 1996; Talbot et al. 2000; Tiwari and Rushton 2005).  Some 

studies have found that the density rates produced by adaptive kernels have higher statistical 

stability and provide greater geographic detail when compared to density estimates from fixed-

distance kernels of the same data (Tiwari and Rushton 2005; Carlos et al. 2010; Cai et al. 2011).  

However, adaptive bandwidths are not without fault.  For example, density maps based on 

adaptive kernels will not have the same geographic resolution throughout; thus, a map of disease 

incidence may show a high rate in a rural area giving the visual impression of local hotspot, 

when the rate is actually an artifact of the large bandwidth size (Talbot et al. 2000).     

The type (fixed vs. adaptive) and size (distance vs. number of point locations) of the 

bandwidth are very important because different parameter choices often result in dramatically 

different visual outputs (Gatrell et al. 1996; Tiwari and Rushton 2005; Danese et al. 2008; Carlos 

et al. 2010; Ratcliffe 2010; Cai et al. 2011).  Over the last 20 years, numerous studies have tried 

to address this issue by creating new ways of calculating the “ideal” fixed or adaptive bandwidth 

for a given dataset.  Unfortunately, there is currently “little guidance available for the novice 

analyst” on parameter selection (Eck et al. 2005).  Some studies recommend researchers 

experiment with multiple sizes and/or types of bandwidth when using spatial kernels (Wang 

2006; Carlos et al. 2010).  However, without robust background in both statistical and spatial 

analysis, this can be quite difficult and time consuming for researchers.  Consequently, many 
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researchers rely on the default setting provided by the software they are using to perform the 

spatial KDE.  

One of the goals of this dissertation is to address this problem by developing 

recommendations for selecting the most appropriate kernel and bandwidth type based on the data 

available.  To do this I will first provide a review of the most common techniques for estimating 

the size for both fixed and adaptive bandwidths.  I will then use each of these techniques to 

generate “ideal” bandwidths for the artificial dataset.  These bandwidths will then be used to 

perform single and dual KDEs of the artificial case (numerator) and population (denominator) 

data.  The strengths and weaknesses of each will then be assessed by comparing the results of 

these analyses to the pre-defined cluster locations. 

 Spatial Parameter Estimation
1
 5.4.3

Spatial kernels require the user to define the size of two spatial parameters:  a grid of the 

study area with a defined cell size; and the size of the filter radius (also known as “bandwidth”).  

Some programs also require the user to specify which type of spatial kernel distribution should 

be used (Figure 5.4B), and whether the filter radius should use a fixed distance bandwidth 

(Figure 5.4C) or an adaptive distance bandwidth (Figure 5.4D).  Spatial parameter selection is a 

critical first step as the finest bandwidths will lack the potential to identify local areas of disease 

clustering.  Conversely, parameters that are too coarse will overestimate the disease surface and 

often under estimate the severity of localized clusters (Hall and Marron 1991; Hazelton 1996; 

Jones et al. 1996; Danese et al. 2008).  The size of the grid cell is also important because it is 

what enables identification of the clustering patterns.  Grid cells that are too small cause the 

interpolation to become jagged, while excessively large grid cells lose the fine-scale detail 

(Wiegand and Moloney 2004; Chainey and Ratcliffe 2005; Danese et al. 2008; Ratcliffe 2010). 

                                                 
1
 See Appendix A for more detailed descriptions on how each of the spatial parameters was calculated 
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One challenge with coral disease analysis is that the uncertainty surrounding the etiology 

of a given disease, making it unclear what bandwidth or cell size is needed to adequately capture 

the disease spreading mechanism (Lentz et al. 2011).  In cases where the spatial parameters are 

not able to be based on a priori knowledge of the epidemiology of the disease being studied, the 

researcher must generate their own spatial parameters (the grid cell resolution and bandwidth 

size) based on the dataset itself (Wand and Jones 1995; Danese et al. 2008; Carlos et al. 2010; 

Lentz et al. 2011).  Since there is currently no “universally accepted” way of calculating these 

data-specific spatial parameters, the most popular techniques associated with fixed and adaptive 

distance spatial kernels were applied to the artificial dataset so their effectiveness could be 

assessed and compared. 

 Estimating Spatial Parameters for Fixed Distance Kernels 5.4.3.1

The following sections describe the methods which were applied to the artificial dataset.  

The results of each these calculations were then used when the fixed distance spatial filters were 

applied to the artificial dataset.   

Two methods were used to estimate the appropriate grid cell size for the artificial dataset.  

The first method used an equation proposed by Chainey and Ratcliffe (2005) in which the cell 

size is “the result of dividing the shorter side of the minimum bounding rectangle (i.e. the 

shortest of the two extents between maximum x and minimum x, and the maximum y and 

minimum y) by 150.”  The second method derived the “appropriate” grid cell resolution from the 

results of the “Visual Calibration Method.” 

The “Visual Calibration Method” was used to test the capabilities of the spatial analysis 

techniques based on a controlled dataset producing “known” clusters (Perry et al. 2006; Wiegand 

et al. 2007; Cai et al. 2011).  This method used the artificial dataset to visually assess which 

spatial parameters most accurately detect the pre-determined artificial clusters.  In order to test 
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the accuracy of spatial filters in identifying these different sized clusters, the Disease Mapping 

and Analysis Program (DMAP) was run using 11 different grid cell resolutions ranging from 

25m
2
 to 500m

2
, and 11 filter radii ranging from 25m to 500m, resulting in a total of 121 different 

analyses.  The artificial cluster boundaries were overlaid on each of the DMAP analyses in order 

to visually assess which spatial parameters most closely predict the locations of the artificial 

clusters.  The filter radius from the map that most accurately identified of the locations the 

artificial clusters will be termed the “Visual Calibration” bandwidth (hVC) when used in 

subsequent analyses. 

Five equation-based “Direct bandwidth calculation methods” were employed using 

equations with various combinations of sample size (n),  standard distance (σ),  and distance and 

area measurements based on the study area and data points locations.  The first method set the 

bandwidth equal to the default search radius used by the kernel density tool in ArcView’s Spatial 

Analyst Extension, in which the bandwidth is calculated by dividing the minimum x,y by 30 

(Williamson et al. 1998,1999).  Given that this estimation is performed by the ArcView software, 

the bandwidths based on this method are referred to as “hAV” bandwidths.   The second method 

used a technique recommended by Bailey and Gatrell (1995) in which the ideal bandwidth for a 

given dataset could be attained using the following equation:          √            (Bailey 

and Gatrell 1995; Williamson et al. 1998,1999); “hBG” refers to the bandwidths resulting from 

this technique.  Next, the Maximal Smoothing Bandwidth (hmax) was calculated using the 

following equation:              √ 
 ⁄   (Terrell 1990; Fotheringham et al. 2000).  Then the 

Optimized Bandwidth (hopt) was calculated using the equation:       [(   ⁄ )    ][ ] (Terrell 

1990; Bowman and Azzelini 1997; Fotheringham et al. 2000; Lentz et al. 2011).  Last the 

Reference Bandwidth (href) was calculated as:       
    √(         )   (Silverman 1986; 
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Worton 1989; Carr and Rodgers 2002; Rodgers and Carr 2002; Rodgers and Kie 2010).  For 

each of these 5 methods, the standard distance (σ) was calculated using the Standard Distance 

Deviation tool in  CrimeStat, and  the sample size (n) was computed as the total number of point 

locations.  

The following “Regression-based Bandwidth Selection Criteria” were also employed: the 

Least Squares Cross-Validation (LSCV) criterion; the Biased Cross-Validation (BCV2) criterion; 

the Corrected Akaike’s Information Criterion (AICc); the Least Squares Criterion (LSC); and the 

Generalized Cross-Validation (GCV) criterion (Press et al. 1986; Sain et al. 1994; Wand and 

Jones 1995; Worton 1995; Jones et al. 1996; Carr and Rodgers 2002; Fotheringham et al. 2002; 

Rodgers and Carr 2002; Rodgers and Kie 2010).  The first two bandwidth selection criteria 

(LSCV and BCV2) were performed using the Home Range Extension (HRE) in ArcView 3.3x 

(Rodgers and Carr 1998,2002; Carr and Rodgers 2002).  Following Fotheringtham et al. (2002), 

the “Spatial Statistics toolbox” in ArcInfo 9.3 was used to perform the regression-based 

calculations used by the remaining three bandwidth selection criteria (AICc, LSC, and GCV).  

Due to the design on the software, the point data had to be in the form of a continuous polygonal 

surface, so the Thiessen polygons created for Mapping and Visualization methods were used as 

the input data here.  The dependent variable (Y) was set as the case locations and the 

independent, or “explanatory,” variable (X) was set as the locations of all 375 points in the 

artificial dataset (representing the underlying population at risk).  Geographically Weighted 

Regression (GWR) was used to estimate the AICc, GCV, and LSC values, for 20 bandwidths 

ranging from 50m to 1,000m in 50m intervals and once with “AICc” selected as the bandwidth 

method.  The output from these analyses were used to calculate the criterion values in their 

respective equations.  These criterion values were then plotted against the 20 bandwidths; the 

lowest point on each graph indicates the “ideal” bandwidth for each selection method.    
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Last, the Nearest Neighbor Analysis (NNA) tool in CrimeStat III  was used to calculate 

the mean nearest neighbor distance values for 20 orders of K, resulting in a bandwidth (hNNA) 

estimation for each order of K (Williamson et al. 1998; Williamson et al. 1999; Levine and 

Associates 2004; Levine 2007; Levine and Associates 2009).    

 Estimating the Spatial Parameters for Adaptive Distance Kernels 5.4.3.2

The two grid cell resolutions estimated for the fixed distance kernels were used for the 

adaptive KDEs.  The filter radius for the adaptive KDEs was calculated as no more than 50% of 

the sample locations, with the single KDEs using the artificial case data (     = 44) and the dual 

KDEs using the artificial population data (           = 375) as their sample locations, resulting 

in the following adaptive distance bandwidths       ≤ 22 and             ≤187, respectively.
2
  

 The Spatial Filtering and Smoothing Analytical Process 5.4.4

The following types of spatial kernel density estimates (KDEs) were performed on the 

artificial dataset using each of the estimated spatial parameters.  Each of the following analyses 

used a rectangular-shaped grid of the study area defined by the following coordinates: 17.816°N, 

64.657°W in the northwest and 17.769°N, 64.572°W in the southeast.   

Kernel Density Estimates (KDE) were performed in CrimeStat III, as opposed to using 

the kernel tool available in ArcMap’s Spatial Analyst extension, because the CrimeStat software 

offered more options for how to perform the KDE and provided extensive documentation about 

how each of these options worked.  The KDE results output was saved as “ArcInfo 

Grid/ArcView Spatial Analyst ‘ASC’” files.  The ASC file format was preferred over the 

                                                 
2
 Note, at the time the adaptive KDEs in this study were being performed, I was unable to find any information in 

either the primary or secondary literature on how to calculate the appropriate number of points for adaptive KDEs.  

However, I did find that SaTScan’s spatial scanning statistic (described in section 5.5) adjusts the size of the 

scanning window based on a pre-defined number of point locations, which is how adaptive distance KDEs work.  I 

therefore based my adaptive bandwidth calculation on the default used by SaTScan (≤ 50% of the population at 

risk).  Given that the SaTScan documentation does not explain what their default is based on, this may be an 

arbitrary or inappropriate calculation method.  Therefore, any future adaptive KDEs should use this calculation 

method with caution, and only after consulting recently published literature to ensure that better estimation 

method(s) have not been proposed. 
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“ArcView ‘SHP’” format.  This is because when ‘SHP’ is selected as the output format, 

CrimeStat will export the KDE results in the form of a polygon grid saved as a shapefile (SHP).  

The shapefile then has to be brought into ArcMap, converted to a point grid (using the “Convert 

Features to Points” tool in the XTools Pro extension), and then these points need to be 

interpolated using the “Interpolate to Raster” tool in the Spatial Analyst extension’s toolbar.  

Whereas, when ASC files are brought into ArcMap they are already in raster form.   

Single KDEs were performed on non-weighted and weighted versions of the artificial 

case data, using fixed and adaptive bandwidth kernels with Quartic distributions.  The “Relative 

density” option was selected for the output units for the single KDEs of the case data.  “Relative 

density” divides the absolute case densities by the grid cell area (50m
2
), resulting in output units 

of “cases per m
2
” rather than “cases per grid cell” (which are the resulting output units when the 

“Absolute Densities” option is selected).  Separate KDEs were performed for each of the 

bandwidths estimated for the case data.   

Dual KDEs were performed on the case and population data from the non-weighted and 

weighted versions of the artificial dataset.  The fixed distance dual KDEs were performed using 

both the CrimeStat and Disease Mapping and Analysis Program (DMAP) software; while, the 

adaptive distance dual KDEs were performed just in CrimeStat III, as DMAP only offers fixed 

distance dual KDEs.  As with the single KDEs, separate dual KDEs were performed for each of 

the bandwidths estimated from the population data.  All of the dual KDE results were based on 

kernels with a uniform distribution.  In CrimeStat this distribution was selected from the 

distributions offered (which are the five kernel distributions shown in Figure 5.4B), while in 

DMAP this is the only distribution available.  “Ratio of densities” was chosen as the output units 

for the dual KDEs performed in CrimeStat because the resulting case to population ratios were 

similar to DMAP’s “clustering rates”, and thus, the same color-schemes could be used for both.  
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DMAP also tests the significance of the clustering rates produced by its dual KDEs by 

performing Monte Carlo simulations in which the clustering surface is tested against a given 

number of simulated surfaces (described in detail in the DMAP section of Chapter 4).  “1000” 

was chosen as the total number of simulations for DMAP to run for each of its KDE estimates, so 

that the resulting simulated areas of significant clustering would have a 99.9% confidence level.      

The resulting spatial KDEs were brought into ArcMap where they could be displayed and 

visually interpreted and compared to each other, as well as the pre-defined artificial cluster 

locations.  The single and dual KDEs from CrimeStat were already in raster form when they 

were brought into ArcMap.  The density estimates associated with the single KDEs of the case 

data were then color-ramped in red, with the darker shades indicating increased case densities.  

The case to population ratios from the dual KDEs (also referred to as “clustering rates”) were 

color-ramped in green, with the darker end of the color spectrum indicating higher rates of case 

clustering.   

Unlike CrimeStat, DMAP does not export its results in a form that can be brought directly 

into ArcMap.  Instead, the “RATE” and “SIGNIF” files from each analysis must be converted to 

dbf format.  The dbfs were then brought into ArcMap  where they were joined to a point-based 

grid of the study area.  The rates and Monte Carlo significance values were then interpolated 

using ArcMap’s Inverse Distance Weighting (IDW) tool, resulting in raster surfaces of the 

clustering rates and significant clustering areas.  The IDW raster surfaces for the clustering rates 

were color-ramped using the same color scheme as the one used for the dual KDEs from 

CrimeStat.  The IDW surfaces for the Monte Carlo simulations were used to extract the 

boundaries for areas in which the clustering rates had statistically significant p-values.  The 

boundaries of areas with a p-value of 0.05 were then outlined in red to indicate which areas had 

statistically significant clustering rates.   
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5.5 Spatial Scan Statistic Methods 

 Introduction, Purpose, and Importance of the Techniques in This Category 5.5.1

Spatial scan statistics are one of the most common types of spatial analysis used by 

spatial epidemiologists to detect the locations of current, past, or even future disease clusters 

(Kulldorff et al. 2005; Robertson and Nelson 2010).  The mechanics used by spatial scan 

statistics are quite similar to those used by adaptive spatial KDEs, in that both use a “scanning” 

window that adjusts the size of the window based on the number of point locations  (Kulldorff et 

al. 2005).  In fact both the fixed and dual KDEs have been referred to as scan statistics (Cai et al. 

2011); and conversely, the scan statistics addressed here can also be thought of as spatial filtering 

and smoothing techniques.  While both analyses use circular kernels to detect clusters, the term 

“spatial filtering” generally refers to the types of kernel density estimates described in the 

previous section, whereas, “spatial scan statistic” almost always refers to analyses performed 

using SaTScan software.  For this reason the two techniques have been divided into their own 

respective ESDA categories. 

 Common Types of Spatial Scan Statistics 5.5.2

There are three main types of spatial scanning statistical analyses provided in SaTScan: 

purely spatial, purely temporal, and space-time analyses (Kulldorff 2010).  As their names imply, 

purely spatial analysis takes only the locations (and potentially weights) of the numerator and 

denominator into account, ignoring any temporal information that may be included in the dataset.  

Conversely, purely temporal analysis ignores the geographic locations, and focuses exclusively 

on the temporal trends in the data.  Space-Time analysis offers the best of both worlds by taking 

both the geographic and temporal information into account.  Additionally, SaTScan offers both 

Retrospective and Prospective versions of the above types of analysis.  Because of their 

predictive nature, prospective analyses require temporal data and can therefore only be 
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performed as purely temporal or space-time analyses; whereas, retrospective analyses can be 

performed as any of the types (Kulldorff 2010).  After selecting what type of analysis is to be 

performed (i.e. purely temporal, purely spatial, or space-time; and retrospective or prospective), 

the user must select which probability model the analysis will use.  SaTScan uses a number of 

models depending on the type of data being analyzed, such as: the Poisson model (both discrete 

and continuous versions); Bernoulli model; Space-Time Permutation model; Multinominal 

model; Ordinal model; Exponential model; or the normal model (Kulldorff 2006).   A brief 

description of each of these models, as well as recommendations for when to use each of them 

was provided in the SaTScan section of the previous chapter (see Table 4.5, on page 89).   

 Spatial Scan Statistical Analyses Performed on the Artificial Dataset 5.5.3

Of the eight types of probability models offered by SaTScan, only the discrete Poisson 

and Bernoulli models are appropriate for the artificial dataset.  The Bernoulli Model examines 

presence/absence data and was therefore used only on the non-weighted case and population 

data, which meant that all of the case and control locations were given a weight of either 1 

(indicating presence) or 0 (indicating absence).  The discrete Poisson Model examines count data 

and was therefore used only on the weighted case and population data, in which the locations 

were weighted by the number case or total individuals present at the given location.  Given that 

there is no temporal information associated with the artificial dataset, both models were run as 

retrospective purely spatial analyses (as opposed purely temporal or Space-Time retrospective 

and prospective analyses).  Since SaTScan uses scanning windows with constantly changing 

filter radii, a comparison of different bandwidths was not appropriate.  Instead, the results of 

SaTScan analyses based on the following criteria for reporting secondary clusters were 

compared: the default, No Geographical Overlap (NGO); No Cluster Centers in Other Clusters 

(NCCOC); No Cluster Centers in More Likely Clusters (NCCMLC); and No Restrictions (NR).   
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The results of all the analyses were then brought into ArcMap where the location, size, 

and significance of the clusters detected using the Bernoulli and Poisson models and each of the 

four options for reporting secondary clusters, could be displayed and compared.  All of the 

results, including the relative risk (RR) and least likelihood ratio (LLR) estimates, for both 

models were also summarized in table format. 

5.6 Spatial Autocorrelation (SA) Methods 

 Introduction, Purpose, and Importance of the Techniques in This Category 5.6.1

As with the previous ESDA categories, there is also overlap in which types of analysis 

are included under the “Spatial Autocorrelation” (SA) category.  Strictly speaking Spatial 

Autocorrelation  is defined as a statistical measure of spatial dependence (the clustering or 

dispersion of point locations) in which the likelihood that the given spatial distribution could 

have occurred through chance alone is also calculated (Myint 2010).  Based on this definition, 

almost all of the previously discussed techniques (with the possible exception of those discussed 

in the Mapping & Visualization ESDA category) could be considered types of SA analysis.  

However, traditionally the term “Spatial Autocorrelation” has been used to refer to local and 

global versions (or variations) of the following three statistics: Geary’s C; Getis-Ord G; and 

Moran’s I (Goodchild 1986; Getis and Ord 1992; Anselin 1995; Fotheringham 1997; 

Fotheringham et al. 2000; Levine and Associates 2004; Anselin et al. 2006a; Getis 2010; Myint 

2010; Ratcliffe 2010; Hu et al. 2011).   All three of these statistics require that the location data 

being analyzed be in the form of continuous polygons (rather than points) in which each polygon 

represents the location of a feature with an associated attribute value.  Given that none of the 

previously discussed methods required the point data to be in this form (in fact, most required 

that it be in the opposite form, as x,y point locations), only the three “traditional” SA statistics are 

included under the Spatial Autocorrelation ESDA category. 
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Spatial autocorrelation (SA) is a statistical measure of the degree of spatial association (also 

referred to as “spatial dependence”) between the geographic locations and attribute values 

associated with each feature in a given dataset (Goodchild 1988; Fotheringham et al. 2000,2002; 

de Smith et al. 2009; Griffith 2009; Myint 2010; Fischer and Wang 2011).  Spatial patterns in 

which a feature with a given attribute value (such as a high or low number of individual coral 

colonies present at that location) are surrounded by features with similar attribute values show 

“positive” spatial autocorrelation (Figure 5.5A1; Goodchild 1988; Griffith 2009; Myint 2010).   

Conversely, when the attribute values associated with neighboring features tend to be more 

dissimilar than the values of features located further away, then the spatial pattern as a whole 

shows “negative” spatial autocorrelation (Figure 5.5A3; Goodchild 1988; Griffith 2009).  Last, 

when the distribution of the attribute values appear to be independent of the geographic location 

of their associated features, this suggests that the attribute values and feature locations are not 

spatially autocorrelated (Goodchild 1986) and therefore represent a random spatial distribution 

(Figure 5.5A2).     

 Common Types of SA Analysis 5.6.2

Global measures of spatial autocorrelation are used to identify the presence and absence 

of clustering, assuming that the results of the analysis apply uniformly to the entire dataset 

(Anselin 1995).  Whereas, local measures are used to find where the clustering (or lack thereof) 

is occurring.  In other words, local SA analyses would detect local differences in the spatial 

distribution of diseased corals within the study area, while global measures assume these 

differences do not exist (Fotheringham et al. 2000).  General differences between global and 

local spatial statistics were provided earlier in Table 5.1 (on page 98).   

The following paragraphs describe the basic characteristics of the three most common 

spatial autocorrelation statistics (Geary’s C, Getis-Ord G, and Moran’s I).  More detailed  
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(A)  General Types of Spatial Autocorrelation (SA)  

(A1)  Positive SA 
1,2

 (A2)    No (Zero) SA 
2
 (A3)   Negative SA 

1,2
 

                          
 

                          
 

                          
 

                          
 

                          
 

Features with similar attribute values              

are spatially clustered, representing an 

aggregated spatial distribution 

The spatial distribution of features and 

their associated attribute values 

appears to be random 

Features are surrounded by features with 

dissimilar attribute values, representing an 

anti-clustered (dispersed) distribution. 

(B)   Specific Types of Positive SA  

(B1)  “Hotspots” formed by clustered highs 
3
                         (B2)  “Cold Spots” formed by clustered lows 

3
                                                  

 48 52 51 85 49 48 52   48 52 51 15 49 48 52  

 49 51 90 95 90 49 51   49 51 10 5 10 49 51  

 50 85 95 100 95 85 85   50 15 5 0 5 15 50  

 51 49 90 95 90 51 49   51 49 10 5 10 51 49  

 52 48 49 85 51 52 48   52 48 49 15 51 52 48  

Feature with a high value is surrounded by features 

with similarly high attribute values, suggesting that 

the high value features are part of a spatial cluster. 

Statistically Significant Hotspots are referred to as                          

“High-High” (HH) clusters. 

Feature with a Low value is surrounded by features 

with similarly  Low attribute values, suggesting that 

the low value features are part of a spatial cluster. 

Statistically Significant Cold Spots are referred                  

to as “Low-Low” (LL) clusters. 

(C)  Specific Types of Negative SA 

(C1)  “Spatial Outlier” with a High feature value (C2)  “Spatial Outlier” with a Low feature value 

 48 52 51 10 49 48 52   48 52 51 90 49 48 52  

 49 51 5 0 5 49 51   49 51 95 100 95 49 51  

 50 10 0 100 0 10 50   50 90 100 0 100 90 50  

 51 49 5 0 5 51 49   51 49 95 100 95 51 49  

 52 48 49 10 51 52 48   52 48 49 90 51 52 48  

Feature with a high attribute value is surrounded by 

features with dissimilar, low attribute values, suggesting 

that the high valued feature is a spatial outlier. 

Statistically Significant (p ≤ 0.05) high value Spatial 

Outliers are referred to as “High-Low” (HL) outliers. 

Feature with a low attribute value is surrounded by 

features with dissimilar, high attribute values, suggesting 

that the low valued feature is a spatial outlier. 

Statistically Significant (p ≤ 0.05) low value Spatial 

Outliers are referred to as “High-Low” (HL) outliers. 

Figure 5.5  Common patterns detected through Spatial Autocorrelation (SA) analyses.  Note: 

superscript numbers indicate that the given diagram is based on concepts derived from the 

following published figures: 
1
Myint (2010)’s Figure 1 on page 2607; 

2
Fischer and Wang 

(2011)’s Figure 2.3 on page 24; and 
3
Myint (2010)’s Figure 2 on page 2608. 
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information is provided for the global and local versions of the Getis-Ord G and Moran’s I SA 

statistics in Tables 5.2 and 5.3, respectively.  The Geary’s C was not included in either table 

because I was unable to find a spatial analysis program that would compute this statistic.     

The Geary’s C statistic estimates the degree of spatial association based on squared difference 

measurements of the correlation between the attribute values and locations of spatial features in a 

given dataset (Fischer and Wang 2011).  The results of both global and local versions of this 

statistic are assessed using the Geary Ratio (GR), which is a quantitative index of spatial 

autocorrelation.  The null hypothesis of complete spatial randomness (CSR) is accepted when the 

calculated index values are equal to 1 and rejected for C  1.  Positive SA is indicated by index 

values between zero and one (0 < C < 1), while index values greater than one (C > 1) suggest 

negative SA (Goodchild 1986; Lee and Marion 1994; Fischer and Wang 2011).  

The Getis-Ord G statistic measures the amount of positive SA and determines whether 

this clustering is of high or low feature values (Figure 5.5B).  The global version of the G 

statistic (sometimes referred to as the General G) estimates the amount and type of positive SA 

for the entire study area, while the two local versions of the statistic (   and   
  

) estimate the 

amount and type of clustering for the each feature located in the study area.  Positive SA is 

characterized by the spatial clustering of features with similar attribute values, resulting in the 

formation of local “hotspots” and “cold spots” (Fischer and Wang 2011).   

Hotspots” occur when features with high attribute values are surrounded by features that 

have similar high attribute values (Figure 5.5B1), and conversely, “cold spots” occur when 

features with low attribute values surround features that also have low attribute values (Figure 

5.5B2).  As with the global version (G), both the    and   
  

statistics are measures of clustering 

intensities of features with either high or low attribute values.  The    statistic measures the 

amount of positive SA for a given location (i) by the strength of the correlation between the  



 

120 

Table 5.2   Global Spatial Autocorrelation (SA) Statistics   

   Getis-Ord General G (G)  Moran’s I (I)  

Description1,2 “Measures the degree of clustering for either                      

high values or low values”  

“Measures spatial autocorrelation based on                   

feature locations & attribute values”  

Conceptual 

Illustrations1,2  

  

Equation3,4 

 

  

Null Hypothesis 

(H0) 

H0 : Complete Spatial Randomness (CSR), spatial distribution of the feature values is random 

Accept H0  when   p ≥ 0.05                       Reject  H0  when   p  0.05   

Index Values 

 

The range of General G (G) Index values varies 

Observed G > Expected G  =   + z : highs are clustered 

Observed G < Expected G  =  –  z : lows are clustered  

Observed G = Expected G :  z = 0 : random distribution 

Moran’s Index (I) values are usually between ±1 

+ I : indicates a tendency towards clustering 

– I : indicates a tendency towards dispersion 

I ≈ 0 : indicates spatial distribution is random . 

Critical Values 
(z – scores) 

 

z-scores indicate the clustering type & intensity 

     + z-scores : high values cluster together 

     – z-scores : low values cluster together 

   z-score = 0 : no apparent clustering 

z-scores indicate the distribution type & intensity 

+ z-scores : high &/or low values are clustered  

– z-scores : high &/or low values are dispersed 

      z-score = 0 : no apparent clustering  

ArcMap     

Results  
Output 

No Spatial Output.   

The Observed & Expected Index Values, z-score, & p-value 

represent the overall spatial distribution of the feature values within the study area 

Note: superscript numbers indicate that the given material was taken directly from the following sources: 1ESRI (2009h);  2ESRI 

(2009i); 3ESRI (2009j); and  4ESRI (2009a).  The rest of the information shown in the above table was based on the 

following references: Goodchild (1986); Waller and Gotway (2004); de Smith et al. (2009); and  Myint (2010). 

 

locations and attribute values for the features surrounding the location i; whereas, the   
  

statistic 

measures the correlation strength between the attribute value of location i and the locations and 

values of the surrounding features (Fischer and Wang 2011).  In other words the attribute value 

and location of the feature of interest (i) are included in the clustering estimate of the   
  

but not 

the    statistic. 

The Moran’s I SA statistic estimates the degree of spatial association based on cross-

product measurements of the correlation between the attribute values and locations of spatial 

features in a given dataset (Fischer and Wang 2011).  The key difference between Moran’s I and  
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Table 5.3   Local Spatial Autocorrelation (SA) Statistics 

 Getis-Ord Local G (  
 )  Local Moran’s I (  )  

Description 

 

Identifies where features with a given attribute value 

are surrounded by features with similar attribute values 

suggesting that these features are part of a cluster.  

Clusters made up of features with high attribute values 

are referred to as Hot Spots; while clusters made up of 

low values are referred to as Cold Spots.  

The   
  statistic also estimates the statistical 

significance associated with each of these                              

hot & cold spots.   

Significant Hot Spots are referred to as High-High 

(HH) clusters & significant Cold Spots are referred to 

as Low-Low (LL) clusters. 

Identifies where Hot & Cold Spots are located;                       

as well as, the locations of Spatial Outliers.                   

“Spatial outlier” refers to a feature surrounded                    

by features with dissimilar attribute values.   

The     statistic also estimates the statistical    

significance associated with each of the                           

spatial clusters & spatial outliers.    

Significant clusters are referred to as HH & LL. 

Significant spatial outliers with high attribute values 

(surrounded by features with low attributes values) are 

referred to as High-Low (HL) outliers, while low value 

outliers are referred to as Low-High (LH) outliers. 

Conceptual 

Illustration1,2  

  

Equation3,4                     

 

 

Null hypothesis 

(   ) 
    : Complete Spatial Randomness (CSR), spatial distribution of the feature values is random. 

The p-values are used to determine whether to Accept or Reject the     feature by feature.            

Accept     when   p ≥ 0.05        and        Reject      when   p  0.05   

Index Values The   
  statistic is a z-score, 

So for any given feature the computed   
  value                  

will be the same as the computed z-score value 

   > 0 : surrounding attribute values are Similar              

   < 0 : surrounding attribute values are Dissimilar             

   = 0 : surrounding attribute values are Random 

Critical Values 

(z – scores) 

 

      | z | indicates the degree of spatial clustering  

 z > 0 : high values cluster together 

 z < 0 : low values cluster together 

 z = 0 : no apparent clustering in attribute values 

 z indicates the type &| z | degree of spatial dependence   

  z > 0 : high or low values cluster together 

  z < 0 : high or low valued spatial outlier  

  z = 0 : spatial distribution of values is Random 

Significance                       

(p – values) 

Represents the statistical significance of                          

spatial clustering of values 

Represents the statistical significance of                       

the computed Index values (  ) 

ArcMap  

Results Output  

Spatial Output of Local Clusters 

   
   z-scores (GiZScore) & p-values (GiPValue)                  

can be used to create choropleth maps that show both 

the locations & statistical significance of clusters  

Spatial Output of Local Clusters & Spatial Outliers 

    Index values (LMiIndex), z-scores (LMiZScore), 

p-values (LMiPValue), & Cluster Types (COType)                  

can be used to create choropleth maps showing the 

locations & significance of clusters & spatial outliers        

Note: superscript numbers indicate that the given material was taken directly from the following sources: 1ESRI (2009b); 2ESRI 

(2009c); 3ESRI (2009e); and  4ESRI (2009g).  The rest of the information shown in the above table was based on the 

following references: Anselin (1995); Fortin and Dale (2005); and  de Smith et al. (2009). 
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Getis-Ord G statistics is that the I statistic also estimates the amount of negative SA, whereas the 

G statistic just deals with the positive SA.  The global version of the I statistic can therefore be 

used to determine whether the overall spatial distribution of a given dataset is more clustered or 

dispersed than would be expected through chance alone.  Whereas, the local version of the 

statistic (  ) can be used to detect the location and significance of features with spatially clustered 

values (Figure 5.5B), as well as, features with spatially dispersed values (Figure 5.5C).    

 SA Analyses Performed on the Artificial Dataset 5.6.3

The two most common types of Global SA analysis, the Getis-Ord General G and 

Moran’s I, were performed on the Artificial dataset using the “High/Low Clustering (Getis-Ord 

General G” and “Spatial Autocorrelation (Moran’s I)” tools from the “Analyzing Patterns” 

toolset provided in ArcMap’s “Spatial Statistics” toolbox.  Both the Getis-Ord General G and the 

Moran’s I SA analyses were performed on weighted versions of the artificial case, control, 

population (case + control), and prevalence (estimated as the number of case individuals divided 

by the total number of individuals present at each location) data separately.  The results from 

these analyses were then displayed in a table where they could be compared.  Local versions of 

both statistics,   
  and Local Moran’s I (  ) were also performed on the same data using the “Hot 

Spot Analysis (Getis-Ord Gi*)” and “Cluster and Outlier Analysis: Anselin’s Local Moran’s I” 

tools from the “Mapping Clusters” toolset, which is also provided in ArcMap’s Spatial Statistics 

toolbox.  The cluster types, index values, z-scores, and p-value estimates from each of the local 

analyses were then compared using choropleth maps of their values.  For comparative purposes 

Univariate and Bivariate Local Moran’s I analyses were also performed using the OpenGeoDa 

software.  Univariate Local Moran’s I analyses were performed separately on the artificial case, 

control, and prevalence data using the “Univariate LISA” tool located under the “Space” menu 

option in OpenGeoDa.  A Bivariate Local Moran’s I analysis was also performed on the 
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artificial case and population data using the “Multivariate LISA” tool, which is also located in 

the Space menu.  A spatial weights matrix based on queen contiguity was used for all Local 

Moran’s I analyses performed in OpenGeoDa.  The resulting analysis output was joined to the 

original Thiessien polygon shapefile, which was then brought into ArcMap so that the index 

values, cluster types, and cluster significance estimates could be displayed as choropleth maps.   

All of the SA analyses (both global and local) were performed on weighted versions of 

the artificial dataset in which the point locations were displayed as a continuous polygonal 

surface using projected versions of the Thiessen polygons created in section 5.2.3.  The null 

hypothesis of complete spatial randomness (CSR) was either accepted or rejected based on the 

individual results calculated by each of the SA statistics.  The results for each statistic were 

assessed using the information provided in Tables 5.2 and 5.3, and statistical characteristics 

associated with the standard normal distribution (Figure 5.6). 

5.7 Spatial Regression Methods 

 The following section provides a brief overview of spatial regression analytical 

methods.  Spatial regression is designed to evaluate and model the spatial relationship between 

two or more attributes associated with a minimum of several hundred-feature locations (ESRI 

2009d).  The artificial dataset used to assess the other spatial methods in this chapter, was a 

relatively small dataset designed to represent a relatively small geographic area.  Given that the 

artificial dataset only contained 44 case locations, which would have been the variable of 

interest, spatial regression was not appropriate.  Consequently a more comprehensive review of 

this ESDA category has not been included as part of this dissertation. 

 Spatial Regression 5.7.1

Spatial regression is often the final step in ESDA because it goes beyond just 

visualization and cluster detection, allowing the relationships between different spatial variables 
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Figure 5.6  The p-values and z-scores calculated during the various types of spatial 

autocorrelation (SA) analyses performed are all based on the Standard Normal Distribution 

(shown above).  The significance of the SA results can be determined by locating the calculated 

p-values and z-scores on the above figure.  Note: this  figure was adapted from Figure 6.4 on 

page 111 of Spatz and Johnston (1976)  and  Appendix C10 on page 219 of Ebdon (1985).  

 
to be modeled in order to better explain which factors (independent variables) have the most 

influence on the spatial nature of the dependent variable (Anselin 2005).  Well specified 

regression models can be used to explain the phenomena of interest, test hypotheses, and 

potentially even predict future outcomes (ESRI 2009f; Rosenshein et al. 2011).  Regression 

techniques are used to model the linear relationship between a dependent variable and one or 

more independent variables (Figure 5.7A; Charlton and Fotheringham 2009).  The “dependent” 

variable ( ), which is also referred to as  “response” variable or the “Regressand”, is the variable 

or process which is trying to be understood (Charlton and Fotheringham 2009; ESRI 2009f).  
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The “independent” variable ( ), also known as the “predictor” or “exploratory” variable , or as 

“Regressors” when referring to more than one  , is the variable(s) which are being used to try to 

help explain the dependent variable (Charlton and Fotheringham 2009; ESRI 2009f).  In the case 

of coral disease, the disease of interest would be the dependent variable, and the independent 

variables would be factors that might help model the disease of interest, such as: other coral 

disease data; environmental data (salinity, temperature, depth, acidity, etc.); or anthropogenic 

stressors. 

 In addition to being the “best known” of the regression techniques (ESRI 2009f), 

Ordinary Least Squares (OLS) regression (Figure 5.7C) provides the foundation for 

Geographically Weighted Regression (GWR) analysis (Figure 5.7D), and therefore serves as the 

starting point for any type of spatial regression analysis (Tu and Xia 2008; Charlton and 

Fotheringham 2009; ESRI 2009f; Rosenshein et al. 2011).   OLS is used to create a global model 

of the variable or process of interest, such as: whether or not the spatial distribution of a given 

coral disease is related to specific anthropogenic stressors, and if so, which stressors appear to be 

more influential than others.  The results of OLS are used to build a well specified GWR and 

provides guidance on selecting the key exploratory variables.  GWR is then used to model this 

relationship at the local level by fitting the OLS regression equation to each individual feature in 

the dataset.  In this way, OLS and GWR methods can provide powerful, and a statistically robust 

way of analyzing linear relationships spatially.  See Figure 5.7 for additional information.  

5.8 Summarizing the ESDA Methodology 

Table 5.4 provides a summary of the six Exploratory Spatial Data Analysis (ESDA) 

categories, the types of analysis generally included under each category, and examples of the 

types of information that can be obtained from each ESDA category and analysis type.  The 

results of the analyses described in this table are presented in the following chapter.
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 (A)  Common Linear Relationships modeled using Regression analyses (B)  Residuals 

     

(C)  Ordinary Least Squares (OLS) Regression (D)  Geographically Weighted Regression (GWR) 

Provides a global model of the relationship between 2 or more variables Models the local spatial variability of the relationship between 2 or more variables 

 ̂     ∑        
 

  ̂    (     )  ∑  (     )      
 

 

- The relationship between the dependent ( ) & independent variables ( ) is the same 

(homogeneous) throughout the study area.   

-  Any geographic spatial variation present must be confined to the error term 

- Variance is constant 

- The model’s residuals are uncorrelated (no autocorrealation) 

- No spatial output 

 

- Allows spatial variation (heterogeneity) between the dependent ( ) & independent ( ) 

variables by estimating the parameters at individual locations (     ).  

-  Observation  ’s parameter estimates are influenced more by nearby observations than by 

those further away 

- Improves the reliability of relationships by reducing the amount of spatial autocorrelation 

- Regression equation is calibrated independently for each observation   , resulting in 

separate parameter estimates & regression statistics for each location  (spatial output)            

where…  

  ̂   is the estimated value of the dependent variable for observation   

    is the value of the  th independent variable for    

(     )  is the geographic location (coordinates) of observation   

   is the intercept 

   is the parameter estimate for variable   

     is the error term 

Figure 5.7   Additional information related to spatial regression.  Note: the above figure was adapted from the following sources: 

Figure 5.1 on page 186 of Devore and Peck (2005); Mennis (2006); and Charlton and Fotheringham (2009). 
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Table 5.4    A summary of the different types of Exploratory Spatial Data Analyses (ESDA) discussed in this chapter and examples 

of the types of information that can be attained from each of them. 

Type of Spatial Analysis Spatial Information Attained 
 

1. Mapping & Visualizing Data 
 Mapping Point Locations using points & polygons 
 Scaling Point Symbols &/or colors to visualize intensity 

 

2. Point Pattern Analysis 

o  Centrographic Statistics  
 “Mean Center” estimates  
 Median Center (MdnCntr)  
 Minimum Convex Polygons (MCP) 
 Standard Distance & Deviation Estimates 

o Distance Statistics 
 Nearest Neighbor Analysis (Nna) 
 Ripley’s K (K) 
 

3. Spatial Filtering and Smoothing 
 Single Kernel Density Estimates (KDE) 
 Dual KDEs 
 DMAP’s Dual KDE with Monte Carlo simulations 

 

4. Spatial Scan Statistics 
 Spatial & Temporal Scan Statistics 

 

5. Spatial Autocorrelation (SA) 

o Global SA 
 Getis-Ord General G 
 Moran’s I 

o Local SA 
 Getis-Ord   

  

 Local Moran’s Ii 
 

6. Spatial Regression 
 Ordinary Least Squares (OLS) Regression 
 Geographically Weighted Regression (GWR) 

 

Visualizing Spatial Distributions 
 Visualizing the spatial distribution of data locations 
 Visualizing the spatial distribution of data density (or intensity of an attribute)   

 

Describe the General Spatial Distribution of the Data 

o Demonstrate the location & spatial distribution of point patterns 
 Identifying the central focal point of the points 
 Useful when outliers are influencing the mean center 
 Simplest method for estimating the Home Range of an animal 
 Estimate the general distribution of the data around a central focal point 

o Test hypotheses regarding the spatial distribution of points 
 Examine spatial dependence (clustering or dispersion) at a given scale 
 How spatial dependence changes with distance & scales of measurement 

 

The Presence, Degree, & Location of Clusters 
 Density, Intensity, and Probability estimates 
 Prevalence, Odds Ratios, & Relative Risk Estimates 
 All of the above plus Significant Clustering Areas 

 

Scan Statistics are used to detect Outbreaks through the Cluster Analysis 
 Cluster Size, Significance, Relative Risk, Changes with time 

 

Whether or Not Clustering is Present  

o Whether or not Spatial Autocorrelation (SA) is present region-wide 
 Measures the degree of clustering for either “high” or “low” values 
 Measures the amount of SA based on feature locations & attribute values 

o Where local SA is present  
 Identifies where “high” or “low” values cluster spatially 
 Identifies the locations of high & low clusters, as well as spatial outliers  

 

Performs local regression analyses without assuming spatial homogeneity 
 OLS results output is used to build the GWR model 
 Assesses spatial heterogeneity between independent & dependent variables 
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Chapter 6. Results of the ESDA of the Artificial Dataset 

“Characterizing reef sites where disease distribution and prevalence, 

and the frequency, intensity and distribution of epizootic events, is 

different from other reefs might provide important information to 

better understand the spatial/temporal dynamics of coral and 

octocoral diseases in the region.”  –  Weil and Croquer (2009) 

6.1 Mapping and Visualization Results 

The results of the point and polygon-based visualization techniques used for the non-

weighted and weighted versions of the artificial dataset are shown in Figure 6.1.  The non-

weighted and weighted versions of the artificial case and control data were depicted using the 

same shades of red and green for both the point and polygon-based visualization techniques.   

 

Figure 6.1  Different techniques for visualizing the Artificial Cluster Dataset 
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The locations of the artificial clusters were more accurately depicted using the point-

based method (Figure 6.1A1 and B1) because the area of the Thiessen polygons associated with 

the case data often extended past the artificial cluster boundaries (Figure 6.1A2 and B2).  

However, the polygon-based visualization method was more effective for displaying the case and 

control densities (Figure 6.1B2 and C2, respectively) because their non-overlapping boundaries 

made the variations in color easier to distinguish; while the overlapping point symbols were 

distracting and harder to interpret (Figure 6.1B1 and C1).  

In cases where only the spatial distribution and attributes associated with the case 

locations are of interest, it may be useful to create a “prevalence map” in which the number of 

case individuals is divided by the total number of individuals present at a given location (Figure 

6.2).  Prevalence maps offer a way of visualizing case density while also accounting for the 

underlying population density; however, all information regarding the population densities of 

non-case locations is lost.   

 

Figure 6.2 Prevalence Map, based on the weighted Artificial Case and Population data, using 

the polygon-based visualization technique. 

 For this reason, point-based visualization techniques are recommended for portraying data 

locations (non-weighted data); while, polygon-based visualization techniques are recommended 

for portraying the attributes values associated with the feature locations (weighted data). 
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6.2 Point Pattern Analysis (PPA) Results 

 Results of the Centrographic Statistical PPA of the Artificial Case Locations 6.2.1

The results of the centrographic statistical analyses performed on the artificial case 

locations are summarized in Figure 6.3.  There was a slight difference in the anticipated location 

of the mean center, based on which of the three individual mean center statistics was used 

(Figure 6.3A close-up).  However, the difference between the locations was too small (<5m) to 

be visually discernible without zooming in (Figure 6.3A).  The locations of the Median Center 

(Figure 6.3B) and the Center of Minimum Distance (Figure 6.3A) for the case data were located 

near the general location of the predicted mean center, with the Median Center falling in between 

the mean centers and the center of minimum distance (Figure 6.3G).   

In addition to encompassing all of the case locations, which was expected based on how 

minimum convex polygons (MCP) are defined and created; the MCP also encompassed the entire 

area of three case clusters and the majority of the 4
th

 cluster based on the cluster boundaries 

(Figure 6.3C).  The results of the standard distance and deviation statistical analyses are shown 

in Figure 6.3D-F.  The Standard Distance Deviation (Figure 6.3D) encompassed the entire 

cluster area for both the 100m and 250m clusters, but only included two case locations for the 

500m cluster and none of the case locations for the 50m cluster.  The polygon representing the 

Standard Deviation of the X and Y coordinates (Figure 6.3E) encompassed all of the cases in the 

100m cluster, a few of the cases from both the 250m and 500m clusters, and none of the cases 

from the 50m cluster.  The standard deviational ellipse based on 1 standard deviation also 

encompassed all of the cases from the 100m cluster while also including more cases from both 

the 250m and 500m clusters and bordered the location of the 50m cluster (the 1x ellipse in 

Figure 6.3F).   
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Figure 6.3 Centrographic Statistical Point Pattern Analyses (PPA) performed on the case 

locations from the non-weighted artificial dataset using the “Spatial Distribution Tools” in 

CrimeStat III.  The results of the mean and median center statistical analyses are shown in A-B, 

the Minimum Convex Polygon (referred to in CrimeStat as the “convex hull”) is depicted in C, 

the results of the individual standard distance and deviation statistical analyses are shown in D-F, 

and last G depicts the results of all of the centrographic statistics.  Specifically,  (A) shows the 

location of the Center of Minimum Distance and the general location of the mean center based on 

the specific locations of the Harmonic Mean (HM), the Geometric Mean (GM), and the Mean 

Center (MC), which are shown in the inset; (B) shows the location of the Median Center;  and 

(D-F) shows the area encompassed by the Standard Distance Deviation (D),  the Standard 

Deviation of the X and Y Coordinates (E), and the Standard Deviational Ellipses (F) based on 1 

standard deviation (1x) and 2 standard deviations (2x). 
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 Results from the Nearest Neighbor Analysis (NNA) of the Case Locations 6.2.2

The results of the Nearest Neighbor Analysis (NNA) of the artificial case locations based 

on the first order of K are given in Table 6.1.  Statistically significant (p  0.0001) spatial 

clustering (NNI < 1) was found between case locations and their first nearest neighbor (K = 1), 

with a mean nearest neighbor distance of 73.53m.    

 
Table 6.1 Results of Nearest Neighbor Analysis (NNA) of the Artificial Case Locations, based 

on first order (K = 1) Nearest Neighbor Index (NNI) values. 

Mean Nearest Neighbor Distance        73.53m Nearest Neighbor Index (NNI)      0.3485 

Standard Deviation of Nearest Neighbor Distance        85.00m Standard Error     16.63m 

Minimum Distance          5.74m Test Statistic (z)  - 8.2675 

Maximum Distance   3,994.45m p – value  (one tail)   0.0001 

Mean Dispersed Distance      453.43m p – value  (two tail)     0.0001 

Mean Random Distance based on the size of the Study Area*      210.99m   

*The size of the study area was based on the area of the surveyed benthic habitat which was 7,834,831.06m2 

 

Plotting the NNI values against the 44 orders of K-Nearest Neighbors revealed that the 

case locations tended to be spatially clustered (NNI < 1) for the first 21 orders of K (the 21 

nearest neighbors), but spatially dispersed (NNI > 1) for NNA based on higher orders of K 

(Figure 6.4).  The strongest clustering (NNI < 0.5) was detected for the first 10 orders of K; 

increasing to NNI ≈ 0.75 for the next 10 orders of K.   

 

Figure 6.4  Graph of the Nearest Neighbor Index (NNI) values for the Nearest Neighbor 

Analysis (NNA) of the Artificial Case locations for the 44 orders of K Nearest Neighbors tested.  

NNI < 1 indicates Spatial Clustering and NNI > 1 indicates Spatial Dispersion. 
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This makes sense, given that each of the artificial clusters has 11 case locations 

associated with it, and therefore, the 10 nearest neighbors of any given case location would be 

the locations of the 10 other cases associated with the given case cluster.  Thus, the strongest 

clustering should be detected for the 10 nearest neighbors, as orders above 10 would be testing 

the spatial dependence of cases located in different clusters.  Given that the cluster with the 100m 

radius is located within the boundary of the cluster with the 500m radius, and the cluster with the 

50m radius is located near the cluster with the 250m radius.  It would also follow that spatial 

clustering is likely to be detected between the cases located in one cluster and the cases in the 

nearest other cluster, which explains why clustering was detected between any given case 

location and the 21 case locations closest to it (i.e. its 21 nearest neighbors).   

 Results from Ripley’s K Analysis of the Artificial Case and Population Data 6.2.3

The individual results of the Ripley’s K analyses performed on the non-weighted and 

weighted versions of the artificial case and population data are shown in Figure 6.5.  The 

benchmark for evaluating complete spatial randomness (CSR) is depicted by the solid grey line, 

representing the Expected K values.  Observed K values that fall above this line are considered 

spatially clustered, while Observed K values falling below this line are considered spatially 

dispersed.  Based on these analyses, the non-weighted case locations were found to be spatially 

clustered to a statistically significant extent (p = 0.01) for distances < 550m, significantly 

dispersed between 550m and 600m, and dispersed (but not to a statistically significant extent) at 

distances greater than 600m (Figure 6.5A).   

Ripley’s K analyses of the weighted case locations (Figure 6.5B) also detected clustering 

at distances < 550m and dispersion at distances > 550m; however, given that the Observed K 

values fell between the upper and lower confidence intervals the observed clustering and 

dispersion were not statistically significant.  Ripley’s K plots of the underlying artificial  
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Figure 6.5  Ripley’s K plots comparing the spatial distributions of the non-weighted and 

weighted versions of the artificial case and population datasets.  Note, the spatial distribution is 

considered statistically significant when the observed K values fall outside of the 99% 

confidence envelope.  For this reason the area between the observed K values and the upper 99% 

confidence interval (C.I.) is considered to have a statistically significant spatial distribution, with 

significant clustering occurring above the expected K values (y=d) and significant dispersion 

occurring below y=d. 
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population data found spatial clustering at all distances tested (Figure 6.5C and 6.5D).  This 

clustering was found to be significant for all distances (0m – 1,000m) based on the non-weighted 

locations of the artificial population data (Figure 6.5C); but not significant when the locations 

were weighted by the number of individuals within them (Figure 6.5D).   

Figure 6.6 shows the same information as Figure 6.5.  However, the values in Figure 

6.6 have been normalized by subtracting the expected values (d) from the observed values (L(d)).  

The benchmark for evaluating CSR for normalized values then becomes y = 0, as opposed to the 

prior, non-normalized CSR benchmark of y = d.  Thus, even though the results are the same as 

those described above the hyperbolic nature of the plots has been removed, making the resulting 

graphs much more expressive.  For this reason, only normalized data were used to create the 

plots of the remaining Ripley’s K analyses.   

The difference function (D) was used to compare the spatial distribution of the case data 

to the spatial distribution of the underlying population (Figure 6.7).  The spatial distribution of 

case locations were found to be significantly more clustered than the clustered spatial 

distribution of the underlying population locations at distances less than 400m, and significantly 

more dispersed than the dispersed spatial distribution of the distances greater than 400m and less 

than 500m; however, case locations were found to be more clustered at distances less than 450m 

and more dispersed than the underlying  population at distances greater than 500m (Figure 

6.7A).  No significant difference was detected between the spatial distributions of the case and 

population locations at distances greater than 450m.   

A similar trend was detected when the difference function was used to compare the 

spatial distribution of the weighted case locations to the spatial distribution of the weighted 

underlying population locations (Figure 6.7B).  When the case locations were weighted by the 

number of individual cases present at each location, the spatial distribution of cases was found to 
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Figure 6.6  Normalized Ripley’s K plots depicting the same information as shown in Figure 

6.5, but here the Ripley’s K results have been normalized.  Notice how the areas with significant 

spatial distributions are slightly more discernible in the normalized plots above (A and C), than 

they were in the non-normalized plots shown in Figure 6.5 A,C.   
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Figure 6.7  Results of the Ripley’s K analyses performed on the artificial dataset.  Normalized 

Ripley’s K plots were used to assess the spatial distribution of the artificially clustered points (i.e. 

case locations) compared to the spatial distribution of all of the artificial data points (i.e. case and 

control locations).  (A) Ripley’s K analyses performed on the non-weighted version of the 

artificial dataset (i.e. point locations). (B) Ripley’s K analyses performed on weighted versions of 

the artificial dataset (i.e. point densities).   

 

be clustered at distances less than 400m and dispersed at distances greater than 400m.  The 

spatial distribution of the weighted case locations was more aggregated than the aggregated 

spatial distribution of the underlying population at distances less than 350m, and significantly 

more aggregated at distances less than 250m.  Conversely, the spatial aggregation detected for 

weighted case locations between 350 and 400m was more dispersed than the spatial clustering 

detected in the weighted locations of the underlying population.  For distances greater than 

400m, the spatial distribution of the weighted cases locations was significantly more dispersed 
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than the spatial distribution of the underlying population, which was clustered between 400 and 

900m and dispersed at distances greater than 900m. 

Figure 6.8, shows the graphical test of the null hypothesis that artificial point locations 

weighted by the number of individuals within them are not significantly more clustered or 

dispersed than the underlying spatial distribution based on the point locations alone.  This 

hypothesis was rejected for the artificially clustered (case) data at distances less than 550m 

because the weighted observed K were greater than the upper CI for the non-weighted observed 

K indicating that case locations weighted by the number of individual case events within them 

were significantly more clustered than their locations alone would suggest (Figure 6.8A).  

 

       

Figure 6.8  A graphical representation of the test of the null hypothesis (  ) that the spatial 

distribution of the artificial locations weighted by the number of artificial events occurring 

within them would not be significantly more clustered or dispersed than the underlying spatial 

distribution based on the artificial locations alone (i.e. the non-weighted artificial data).  In order 

for the    to be accepted the Observed K based on the weighted data (thick black line) must fall 

within the upper and lower 99% Confidence Intervals (C.I.s, depicted as thin dashed lines) 

estimated using the non-weighted artificial data.  (A) The    was rejected at distances <550m 

and accepted at distances >550m for the artificially clustered data.  (B) The    was rejected at all 

of the distances tested for the underlying artificial population. 
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However, the null hypothesis was accepted when the case data were examined at 

distances greater than 550m, as the observed K for the weighted case locations was within the 

upper and lower CI for the observed K of the non-weighted case locations, indicating that at 

these distance scales, the spatial dispersion of the weighted case locations was not statistically 

significant from the dispersed distribution of the non-weighted case locations (see Figure 6.8A).  

This hypothesis was rejected for the underlying population for all of the distance scales tested 

because the weighted observed K was above the upper CI for the non-weighted population data, 

indicating that the point locations weighted by the number of individuals within them were, in 

fact, significantly more clustered than the spatial distribution of the locations alone (see Figure 

6.8B). 

Figure 6.9 shows a graphical test of the null hypothesis that locations weighted by the 

number of individuals within them would not be more clustered or dispersed than they would be 

by chance alone.  This hypothesis was accepted for both the artificial case data (Figure 6.9A) 

and the population (Figure 6.9B) because the Observed K based on the non-weighted location 

data fell within the CI envelope based on the weighted Observed Ks. 

Overall, the Ripley’s K results provided new (and important) information about how the 

different distance scales affected the estimated spatial dependence (clustering or dispersion) of 

both the non-weighted and weighted artificial case and population data.  

 

 Summary of the PPA Results 6.2.4

Overall, the centrographic statistical PPA techniques were poor predictors of the artificial 

case and cluster locations; whereas, the distance-based statistical PPA techniques generally 

offered more insight into the spatial nature of the artificial data.  Of the two distance statistical 

PPA techniques tested, Nearest Neighbor Analysis (NNA) of the artificial case locations and the 

Ripley’s K analysis of the weighted and non-weighted artificial case and population data, the  
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Figure 6.9  A graphical representation of the test of the null hypothesis that the spatial 

distribution of the weighted artificial data would not be more clustered or dispersed than would 

be expected through chance alone.  This hypothesis was accepted for both (A) artificial case data 

and the (B) underlying artificial population because the Observed K values (think black line) 

based on the non-weighted data falls within the 99% Confidence Intervals (C.I.s, depicted as thin 

dashed lines) based on the Observed K estimated using the weighted artificial data. 

 

Ripley’s K analyses were preferred over the NNA.  This is because, while the graphical results of 

the NNA analyses could be explained by the artificial case locations and cluster boundaries, it is 

unclear how useful these results would be without a priori knowledge of the spatial nature of the 

data being tested.   

The Ripley’s K results provided new information about how the different distance scales 

affected the estimated spatial dependence (clustering or dispersion) of both the non-weighted and 

weighted artificial case and population data.  Theoretically, the results of the Ripley’s K analyses 

could be used to help select the most appropriate bandwidth (filter radius) for fixed distance 

kernel analyses of the artificial dataset.  Additionally, numerous hypotheses regarding the spatial 

distribution of both the artificial case and population data were able to be tested through the use 
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of the difference function or by simply plotting different combinations of the Observed K and 

confidence interval results.  The major drawback of the Ripley’s K statistic is that it provides no 

spatial output of where the clustering is occurring.  For this reason, the Ripley’s K statistic should 

be used in conjunction with other ESDA techniques that provide spatial output, such as: kernel-

based spatial filtering and smoothing analyses; spatial scan statistics; local spatial 

autocorrelation; or spatial regression analyses. 

6.3 Spatial Filtering and Smoothing Results 

 Spatial Parameter Estimation Results 6.3.1

 Estimated Grid Cell Resolutions 6.3.1.1

Of the 121 DMAP analyses performed on the Artificial Cluster dataset during the Visual 

Calibration Method, only the 62 combinations in which the grid cell resolution was less than or 

equal to the filter radius completed successfully (Figure 6.10; note, due to space constraints only 

a subset of the 62 combinations are displayed in this figure).  Based on a visual examination of 

these results, the combination of a 50m
2
 grid cell resolution and 100m filter radius was found to 

most accurately detect and represent the artificially clustered points (see Figure 6.10 inset).  

Chainey and Ratcliffe (2005) estimation method resulted in a cell size of 21.64m
2
, which was 

smaller than the size of the surveyed transects and therefore inappropriate for this study.  For this 

reason, all subsequent spatial filtering analyses were based on a grid with 50m
2
 cells, and the 

100m filter radius was used as the Visual Calibration method’s bandwidth (hVC) in the 

subsequent kernel density estimate (KDE) analyses. 

 Estimated Fixed Distance Bandwidths 6.3.1.2

The ideal criterion values, and their respective bandwidths, were identified by graphing 

the results of the AICc, GCV, and LSCV bandwidth selection criterion methods  based on the 

denominator data for the artificial dataset (Figure 6.11).  According to the Corrected Akaike’s 
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Figure 6.10 Calibrating the Disease Mapping and Analysis Program (DMAP) using the Artificial Cluster Dataset.  The inset depicts 

the DMAP analysis that most accurately detected the four artificial clusters that were on the following spatial parameters: a 50m
2
 grid 

cell resolution, and 100m filter radius.  Note: The results from the DMAP analysis using Filter Radii and Grid Cell combinations of 

350 and 450m are not included in the above figure due to space constraints. 
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Figure 6.11  The results of the three bandwidth selection criteria methods based on the 

population data from the artificial dataset.  The ideal bandwidth (h) is the one with the lowest 

criterion value, depicted as diamond-shaped symbol.  A bandwidth could not be obtained using 

the Least Squares Criterion (LSC) method, as the lowest LSC value indicates an optimum 

bandwidth of 0m. 

 

Information Criterion (AICc) method, the lowest possible AICc value for the artificial dataset 

was 651.45, which results in an optimal bandwidth of  450m.  Though, bandwidths greater than 

300m caused little change in the AICc value.  The Generalized Cross-Validation Criterion 

(GCV) method found the lowest possible GCV value for the artificial dataset to be 8143.16, 

resulting in an optimal bandwidth of 200m.  The Least Squares Criterion (LSC) method could 

not detect an optimal bandwidth, because a minimum LSC value could not be found.  This was 

likely a result of the wrap around effect, a commonly encountered problem with the LSC when it 

is used in optimal bandwidth selections the calibration wraps itself around the data points.   

The results for all the bandwidth calculations based on the numerator (case locations) and 

denominator (all locations) data for the artificial dataset are summarized in Table 6.2.  The same 

bandwidth was selected by the Biased Cross-Validation (BCV2) and the Least Squares Cross 

Validation (LSCV) criterion methods resulting in estimated bandwidths of  hBCV2 and hLSCV = 65.7m
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Table 6.2   A comparison of 12 different calibration criteria used to select the most appropriate bandwidth size. 

  Numerator data Denominator data 

  (Artificially Clustered Points) (All Artificial Points) 

 Corrected Akaike’s Information Criterion (AICc)                                       — 450.00m 

 Default search radius in ArcView’s (AV) Kernel Density     [   (   )] ⁄    38.67m 106.83m 

 Biased Cross Validation (BCV)                                                    ( ) 65.73m 100.10m 

 Bailey and Gatrell’s (BG) h      [     
    ][√ ] 892.96m 581.72m 

 Generalized Cross-Validation Criterion (GCV)                                — 200.00m 

 Least Squares Criterion (LSC)                                   — — 

 Least Squares Cross Validation (LSCV)                                                     ( )  65.73m 100.10m 

 Maximal Smoothing (max) Bandwidth      [(     )( )] √ 
 ⁄   923.42m 628.81m 

 Nearest Neighbor Analysis (NNA) Bandwidth       ∑ (
   (   )

 
) 

    estimated for 20 orders of K 
K01 :     73.65m 
K20 :  785.03m 

Kmean :  413.95m 

K01 :      81.61m 
K20 :   460.21m 

Kmean :   307.52m 

 Optimized (opt) Bandwidth       [   ⁄ ]
 
   603.64m 369.29m 

 Reference (ref) Bandwidth        
   ⁄ √(         )  ⁄  641.19m 473.37m 

 Visual Calibration (VC) using the Artificial dataset hVC — 100.00m 

where…  
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  is Study Area, which is the area of the surveyed benthic habitat.  (                  ) 

       is the Asymptotic Mean Integrated Square Error, which is a large sample approximation of the MISE 

h  is the size of the bandwidth (i.e. the filter radius) measured in meters 

      is the Mean Integrated Square Error 

n   is the sample size which is calculated as the total number of data points (               &                  ) 

    is sigma (also known as the standard distance), which is the estimated standard deviation of the probability estimate.  
CrimeStat’s  “standard distance deviation” tool calculates sigma as                       &                          

 ̂   is sigma hat, which is the estimated standard deviation of the error term  

  ( )  is the trace of the hat matrix (S) which is a function of the bandwidth 

   is the effective number of parameters in the model, calculated as : v1= tr(S) 

       is the mean variance in the x and y co-ordinates, respectively  

    is the value of the dependent variable at location i  

 ̂   is the fitted value (aka. Estimated, Expected, or Predicted value) of yi 
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for the numerator data, and hBCV2 and hLSCV  = 100.1m for the denominator data.  The bandwidths 

based on the Nearest Neighbor Analysis (NNA) method resulted in a wide range of values based 

on the 20 orders of K.  For this reason the average bandwidth (          ) for the 20 orders of K 

was calculated for both the numerator and denominator.  Four of the bandwidth estimation 

methods (the visual calibration method and the AICc, GCV, and LSC regression-based criteria) 

required the use of denominator data and therefore could not be used to generate bandwidths 

based solely on numerator data.  

 Estimated Adaptive Distance Bandwidths 6.3.1.3

The estimated adaptive bandwidth for the single KDEs performed on the non-weighted 

and weighted versions of the artificial case data were      ≤   , which is 50% of the total 

number of case locations (n = 44).  The estimated adaptive bandwidth used for the dual KDEs 

performed on the non-weighted and weighted versions of the case and population data were also 

calculated as 50% of the artificial population locations (n = 375), resulting in an adaptive 

bandwidth of             ≤    . 

 

 Spatial Filtering and Smoothing Results 6.3.2

 Fixed Distance Single Kernel Density Estimates (KDEs) of the Artificial Case Data 6.3.2.1

The results of the bandwidth comparisons for the single kernel density estimates (KDEs) 

performed on non-weighted and weighted versions of the artificial case data are shown in Figure 

6.12.  A positive correlation was found between the size of the filter radius and the estimated 

area of the case density estimates for both the non-weighted and weighted versions of the 

artificial dataset.  KDEs of the artificially clustered points using bandwidths less than 100m 

appeared to accurately predict the case locations and general areas of the 4 clusters.  Conversely, 

KDEs based on bandwidths greater than 100m not only captured the entire clustering area (as 

opposed to just the case locations), but their estimates extended far beyond the cluster boundaries  
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Figure 6.12 Kernel Density Estimates (KDE) of the weighted and non-weighted versions of 

the case data. Single KDE were performed in CrimeStat III using Quartic probability function 

and fixed distance interpolation.  Both the weighted and non-weighted versions of the case data 

in the artificial dataset was analyzed using 8 of the 12 bandwidth calculation methods, excluding 

the visual calibration (VC) and the 3 regression-based selection criteria methods (AICc, GCV, 

and LSC) because each required the denominator data in order to complete the computation. The 

above KDE estimates are depicted using the “Relative Density” setting in CrimeStat, which 

divided the absolute density of the case (numerator) data by the area of the grid cells (50m
2
) 

resulting in case density estimates per m
2
. 
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providing over-estimates of the clustering area.  For any given bandwidth, the overall area in 

which case density estimates were found for the non-weighted and weighted data were very 

similar.  

 Fixed Distance Dual KDEs of the Artificial Case and Population Data 6.3.2.2

 The results of the bandwidth and dataset comparisons for the fixed distance dual KDEs 

performed on the case and population data in CrimeStat are shown in Figure 6.13.  As with the 

single KDEs, a positive correlation was found between the size of the filter radius and the 

estimated area of the clustering surface.  Dual KDEs using bandwidths around 100m appeared to 

accurately predict the case locations and general areas of the 4 clusters (see the mapped results 

associated with the hAV, hBCV2, hLSCV, and hVC bandwidths in Figure 6.13).  Conversely, dual 

KDEs based on bandwidths greater than 100m not only captured the entire clustering area (as 

opposed to just the case locations), but their estimates extended far beyond the cluster boundaries 

providing over-estimates of the clustering area.  For a given bandwidth, the overall area in which 

case clustering rates were found appeared to be fairly constant between the non-weighted and 

weighted analyses.  However, the actual rates of case clustering were much higher for the non-

weighted data than they were for the weighted data.   

 The results of the bandwidth and dataset comparisons for the DMAP analyses are shown in 

Figure 6.14.  As with the fixed distance KDEs performed in CrimeStat, a positive correlation 

was found between the size of the filter radius and the estimated area of the clustering surface.  

Even though the Visual Calibration Method had already identified that a 100m bandwidth would 

best detect the clusters for the Artificial dataset, DMAP analyses were still run on the artificial 

dataset using the bandwidths estimated by the other methods (all of which were larger than 

100m) in order to have a quantitative measure of the over-estimation of the clustering area.  As 

with the other fixed distance KDEs, for a given bandwidth the overall area in which case  
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Figure 6.13    CrimeStat’s fixed distance dual KDEs of the artificial case and population data. 
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Figure 6.14    DMAP’s fixed distance dual KDEs of the artificial case and population data. 
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clustering rates were found appeared to be fairly constant between the non-weighted and 

weighted analyses.  However, the actual rates of case clustering were much higher for the non- 

weighted data than they were for the weighted data.  When the areas with statistically significant 

rates of case clustering were compared for a given bandwidth, analyses based on the weighted 

data had not only larger areas of significant clustering, but also tended to have even lower p-

values (indicating a greater statistical significance). 

DMAP’s dual fixed distance KDEs were similar to CrimeStat’s dual fixed distance 

KDEs, in that bandwidths around 100m appeared to accurately predict the case locations and 

general areas of the 4 clusters (see the mapped results associated with the hAV, hBCV2, hLSCV, and 

hVC bandwidths in Figures 6.13 and 6.14).  However, the estimated surface area for clustering 

rates based on bandwidths greater than 100m was much smaller for the DMAP analyses.  As a 

result, the clustering rates and significant clustering areas based bandwidths less than 500m were 

found to be good predictors of the predefined artificial clustering areas (see the mapped results 

associated with the hAICc, hGCV, hNna,Kmean, hopt, and href  bandwidths in Figure 6.14).  Whereas, 

dual KDEs based on the same bandwidths in CrimeStat had clustering rates that grossly over-

estimated the clustering areas.  Overall, the hopt and hNna,Kmean bandwidths appeared to be the 

“ideal” bandwidths for DMAP analysis of both the non-weighted and weighted versions of the 

artificial dataset.  Additionally, while bandwidths ~100m were the “ideal” bandwidths for the 

dual KDEs performed in CrimeStat, the DMAP’s analyses using the same bandwidths resulted in 

clustering rates with smaller areas and tended to be more focused on the individual case 

locations, rather than the four general clustering areas. 

 Adaptive Distance Single and Dual KDEs of the Artificial Data 6.3.2.3

The results of the single and dual KDEs using kernels with adaptive bandwidths are 

shown in Figure 6.15.  To facilitate comparisons between the adaptive bandwidth and fixed  
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Figure 6.15  Single and Dual Kernel Density Estimates (KDEs) performed in CrimeStat using 

Adaptive distance bandwidths.  The Single KDEs were performed on the case data using Quartic 

kernel distributions and spatially adaptive bandwidths of hCase ≤ 22 sample points. The dual 

KDEs were performed on the case and population data using Uniform distribution kernels and 

spatially adaptive bandwidths of hPopulation ≤ 187 sample points. The adaptive distance single 

KDEs displayed using (A) the same classified symbology as the Fixed distance single KDEs 

shown in Figure 6.12; and (B) stretched symbology with unique values for the non-weighted 

(B1) and weighted (B2) case densities.  The adaptive distance dual KDEs displayed using (C) the 

same classified symbology as the Fixed distance dual KDEs shown in Figures 6.13 and 6.14; 

and (D) stretched symbology with unique values for the non-weighted (D1) and weighted (D2) 

Case:Population clustering ratios.    
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distance bandwidth KDEs all of the single KDEs were performed using quartic kernel 

distributions, “Relative Density” output units of case density per m
2
, and using the same 

classified symbology in which the density per m
2
 ranges from non-zero values < 0.000,000,1 

(shown in light red) to 0.001 (shown in a darker red).  In this way the results from all of the 

single KDEs could be directly compared because the only difference between their calculations 

was their bandwidth.  In a similar fashion, all the dual KDEs were performed using Uniform 

kernel distributions, “Ratio of densities” output units of case densities divided by population 

densities, and using the same classified symbology in which the Case:Population ratios range 

from non-zero values < 0.01 (shown in light green) to 1.00 (shown in dark green).   

Unlike the single KDEs based on fixed distance bandwidths (Figure 6.12), the single 

KDEs based on adaptive bandwidths of  hCase ≤ 22 points, had interpolated case density values 

greater than zero for the entire study area (Figure 6.15A and B).  Thus, the estimated area for the 

case density estimates using adaptive bandwidth kernels was much larger than the estimated case 

density areas for any of the fixed distance bandwidths, and greatly exceeded the artificial cluster 

boundaries for both the non-weighted and weighted case data.  The general shape of the case 

clustering areas was circular (Figure 6.15A), resembling the output that might be expected from 

fixed distance KDEs of the same data using a much larger bandwidth than any of the bandwidths 

tested in Figure 6.12.  However, despite the extreme over-estimation of the total case clustering 

areas, the areas with the highest case densities (depicted as the darkest shade of red) for both the 

non-weighted (Figure 6.15A1) and weighted (Figure 6.15A2) adaptive kernels did closely 

approximate the predefined artificial cluster boundaries (depicted by the black circles).  In fact, 

when only the areas with the highest estimated case densities were examined, the adaptive kernel 

does a better job of detecting the artificial cluster boundaries than the highest and second highest 

case density estimates of any of the fixed distance bandwidths (Figure 6.16).  
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Figure 6.16  Comparing the artificial cluster boundaries to the areas with the highest case 

density estimates using both fixed (A) and (B) adaptive distance bandwidths.  

 
As with the adaptive single KDEs, the adaptive dual KDEs based on adaptive bandwidths 

of hPopulation ≤ 187 sampled points, also had interpolated Case:Population density values greater 

than zero for the entire study area (Figure 6.15C and D). However, unlike the adaptive single 

KDEs, the shape of the estimated clustering areas for the adaptive dual KDEs (Figure 6.15C) in 

no way resembled the shapes of the clustering areas for the dual KDEs with fixed distance 

bandwidths (Figure 6.14 and 6.15), much less the locations of the pre-defined artificial clusters.  

To see whether these results were real, or just an artificial of the symbology used, the single and 

dual adaptive KDEs were also displayed using “stretched” symbologies based on the minimum 

and maximum values for the non-weighted and weighted data (Figure 6.15B and D).  While the 
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stretched symbology did appear to improve the visual accuracy of the single adaptive KDEs 

(Figure 6.15B), it did not improve the dual adaptive KDE, but rather resulted in even stranger 

depictions of Case:Population clustering ratios (Figure 6.15D).    

 Summary of Spatial Filtering and Smoothing Results 6.3.3

Of all the KDE techniques tested, the single KDEs and the DMAP dual kernels with fixed 

distance bandwidths ≤ 100m were the best at detecting the case locations.  The pre-defined 

clustering areas were most accurately predicted by the following kernels: single KDEs performed 

on the case data using an adaptive bandwidth ≤ 22 points;  dual fixed distance KDEs performed 

on the case and underlying population data using bandwidths ≈100m for the CrimeStat dual 

KDEs or between 100 and 500m for dual KDEs performed in DMAP.   

Ultimately, the goal of the spatial filtering and smoothing techniques is to detect areas 

with higher rates of disease, and when possible, areas that have statistically significant rates of 

disease.  Therefore, it is the locations of the clusters that are of interest, rather than the case 

locations, given that the locations of the cases are already known.  For this reason, when only 

case data are available, adaptive single KDEs were found to be the most accurate way of 

detecting the location and size of the artificial clusters.  When population data are also available, 

DMAP’s dual KDE technique proved to be far more powerful than CrimeStat’s dual KDEs.  The 

case clustering density ratios (or “rates”) produced by the DMAP analyses appeared to be much 

more stable than those produced by CrimeStat, in that they were less affected by changes in the 

bandwidth size, and overall all of the DMAP rates more accurately reflected the location and size 

of the pre-defined artificial clusters.  In addition, DMAP also used Monte Carlo simulations to 

test the clustering rates in order to determine which areas have statistically significant prevalence 

rates.  Of the 11 bandwidths tested, DMAP results based on the hNNA,Kmean (307.52m) and  hopt 

(369.29m) statistics provided the most accurate cluster detections.     



 

155 

6.4 Spatial Scan Statistics Results 

The output from all of the SaTScan analyses of the non-weighted and weighted versions 

of the artificial dataset using the NGO criteria, which is the default criteria for reporting 

secondary clusters in SaTScan, is summarized in Table 6.3.   

 
Table 6.3  SaTScan results of the non-weighted (A) and (B) weighted artificial data 

(A)  Bernoulli Model 

Cluster Type Cluster # p-value RR LLR Observed Expected ODE Radius (km
2
) 

Primary 1 0.001 11.677419 29.771315 13 1.525333 8.522727 0.166026 

Secondary 2 0.001 11.030303 24.913658 11 1.290667 8.522727 0.052679 

Secondary 3 0.001 7.479167 15.45491 11 1.877333 5.859375 0.20797 

(B)  Poisson Model 

Cluster Type Cluster # p-value RR LLR Observed Expected ODE Radius (km
2
) 

Primary 1 0.084 4.14375 5.64428 9 2.41048 3.733696 0.221536 

Secondary 2 0.91 2.903646 1.971386 5 1.80786 2.7657 0 

Secondary 3 0.985 2.7556923 1.459074 4 1.50655 2.655072 0.195997 

Secondary 4 1 2.704478 0.717677 2 0.753275 2.655072 0 

Secondary 5 1 2.248756 0.5011 2 0.90393 2.21256 0.012745 

Secondary 6 1 1.41276 0.251212 5 3.615721 1.38285 0 

Secondary 7 1 1.21958 0.070059 4 3.31441 1.206851 0.264815 

RR=Relative Risk; LLR=Least Likelihood Ratio; Observed= # of observed cases; Expected = # of cases expected; ODE = Observed/Expected 

 

The location, size and significance associated with each of the clusters detected using 

either Bernoulli or Poisson probability models and one of four criteria for reporting seconding 

clusters are visually depicted in Figure 6.17.  None of the primary or secondary clusters based 

on analyses performed on the weighted version of the artificial data using the Poisson probability 

model had significant p-values associated with them.  Conversely, all four of the analyses 

performed on the non-weighted data using the Bernoulli model resulted in three or more 

significant clusters, which often corresponded with the locations of the pre-defined artificial 

clusters.   
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The location and size of the pre-defined artificial clusters were most accurately predicted 

by the SaTScan analysis of the non-weighted artificial data using either the “No Geographical 

Overlap” (NGO) or the “No Cluster Centers in Other Clusters” (NCCOC) options for reporting 

secondary clusters.  Whereas, the “No Cluster Centers in More Likely Clusters” (NCCMLC) and 

“No Restrictions” (NR) options resulted in the prediction of far too many clusters, and greatly 

exceeded the general area of the pre-defined artificial clusters.  Overall the results based on 

either the NGO or NCCOC criteria were found to more accurately represent the artificially 

clustered data; resulting in identical output for the Bernoulli model’s analysis of the non-

weighted data,  and similar output for the Poisson model’s analysis of the weighted data.   

6.5 Spatial Autocorrelation (SA) Results 

All of the global and local spatial autocorrelation (SA) analyses were performed on weighted 

versions of the artificial data, in which each artificial location was “weighted” by the number of 

artificial events present at the given location.  SA analyses were not performed on the non-

weighted versions of the data; because both the Getis-Ord G and Moran’s I statistics require to 

be some degree of variation in the attribute values being tested (Getis and Ord 1992; Anselin et 

al. 2006a; ESRI 2009e,c; Getis 2010).  Analyses involving attribute values that are all equal to 

either one or zero (which is usually the case for presence/absence data) will either render the SA 

statistic unsolvable or produce unreliable results (ESRI 2009h).   

Additionally, both Getis-Ord G and Moran’s I statistics are designed to test associations 

among “neighboring” features, which means that each feature should share a boundary with each 

of its neighbors.  Following Anselin et al.’s (2006a) example, the artificial point locations were 

transformed into a continuous polygonal surface through the creation of Thiessen Polygons, in 

which each polygon represented one point location (see Figure 5.1 on page 95).  The polygons 

were then “weighted” by assigning the number of individual artificial events associated with  
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Figure 6.17   Results of all of the SaTScan analyses performed on the artificial data. 
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each location as the attribute value for their respective polygon.  Last, in order to insure that the 

distance calculations used by the SA statistics were calculated correctly, the coordinate system of 

the artificial polygons had to be transformed from its current Geographic coordinate system 

(characterized by angular measurements and  often depicted in decimal degrees) to a projected 

coordinate system (characterized by linear measurements and often depicted in metric 

coordinates).  The resulting “input data” for the SA analyses is shown in Figure 6.18 (A1, B1, 

and C1). 

Based on visual assessment of the spatial distribution of the density (i.e. the mapped 

weighted attribute values) the following predictions were made.  The detection of feature 

clustering was anticipated for the local SA analyses of both the case and prevalence datasets 

because the attribute locations for both were limited to the general locations of the artificially 

defined clusters (depicted by the black circles shown in Figure 6.18A, C, and D).  However, 

feature clustering was not expected for the global SA analysis of either dataset because the 

artificial clusters were spread across the study area making it unlikely that spatial aggregation 

would be detected as the region-wide trend.  In addition, predominantly low attribute values were 

associated with both the case (Figure 6.18A1) and prevalence (Figure 6.18C1) features, 

suggesting any clustering that was detected by local or global analysis would be of low values 

(“cold spots”).   

 Conversely, little to no spatial association was anticipated for local or global SA analysis 

of the control data because when the artificial dataset was created, the “Generate Random 

Points” tool in the Hawth’s Tools extension was used to insure that the spatial distribution of the 

control points would be random.  The attribute values associated with the control points had also 

been randomly assigned to each location, suggesting spatial clustering of these values would be 

unlikely (or “by chance, only”).  Visual inspection of the spatial distribution of control density  
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Figure 6.18  Results of the Local Spatial Autocorrelation (SA) analyses performed on the weighted artificial data.
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 (Figure 6.18B1) supported this prediction of zero or negative SA, as the spatial distribution of 

the density values appeared to be random or possibly even dispersed.  Any clustering detected 

was also likely to be of low values because the mean number of individual control events per 

feature location was 6.68. 

However, the results of both the global and local SA analyses were quite different from 

what was expected based on the above visual assessment of the spatial distribution of the 

weighted artificial data.  Statistically significant positive SA (clustering) was detected by both 

the global (Table 6.4) and local (Figure 6.18) SA statistics for each of the tested datasets.  The 

positive SA detected by the Getis-Ord General G (Table 6.4A) was of features with high 

attribute values, indicating that the region-wide trend for each of the artificial datasets was that of 

High-High (HH) significant clustering.  When the z-scores and p-values for each were compared, 

the Case and Prevalence features had much higher z-scores (25.02 and 27.59, respectively) and 

lower p-values (p < 0.001) than the control (z = 1.67, p = 0.096) and population (z = 3.04, p = 

0.002) data.  This indicates that the clustering of features with high attribute values was much 

more intense for both the case and prevalence data.  The Global Moran’s I also detected 

significant positive SA, with substantially different z-scores for the two groups (case and 

presence vs. control and population).  The type of clustering (High-High or Low-Low) could not 

be determined using the Global Moran’s I because unlike the General G, the global version of 

Moran’s I does not differentiate between the clustering of high and low values.  Instead the 

Global Moran’s I is used to determine whether features are more clustered or dispersed.  

The similarity between the case and prevalence global G results made sense considering 

that prevalence was calculated as the number of individual case events present at a given location 

divided by the total number of artificial events present at the same location.  As a result 

prevalence values will only be returned for features case individuals present because 
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Table 6.4  Results of Global Spatial Autocorrelation analysis of weighted Artificial data 

(A)  Getis-Ord General G 

Type of 
Individuals 

Observed 
General G  

Expected 
General G 

Variance 
Significance 

(p-value) 
z-Score  Description of Spatial Autocorrelation 

Case                  

Individuals 
0.00183 0.00017 < 0.0000 < 0.001 25.02 

Locations with High Case densities are spatially Clustered.                

There is < 1% likelihood that this clustering is due to chance. 

Control  

Individuals 
0.00019 0.00017 < 0.0000    0.096   1.67 

Locations with High Control densities are spatially Clustered 
but not to a significant extent.  There is a 5-10% likelihood that 

this clustering is due to chance alone. 

Population       
(Case + Control) 

0.00020 0.00017 < 0.0000    0.002    3.04 
Locations with High Population densities are spatially Clustered.   

There is < 1% likelihood that this clustering is due to chance. 

Prevalence 

(Case/Population) 
0.00224 0.00017 < 0.0000 < 0.001 27.59 

Locations with High Prevalence rates are spatially Clustered.   

There is < 1% likelihood that this clustering is due to chance. 

(B)  Global Moran’s I 

Type of  

Individuals 

Observed 

Moran’s I  

Expected 

Moran’s I 
Variance 

Significance 

(p-value) 

z-Score 

(SD) 
Description of Spatial Autocorrelation 

Case                  
Individuals 

0.59993 -0.00267 0.0006 < 0.001 24.49 
Case density locations are spatially Clustered. There is < 1% 
likelihood that this clustered pattern is due to chance alone. 

Control  

Individuals 
0.06914 -0.00267 0.0007    0.005    2.80 

Control density locations are spatially Clustered. There is < 1% 

likelihood that this clustered pattern is due to chance alone. 

Population       

(Case + Control) 
0.10956 -0.00267 0.0007 < 0.001   4.37 

Population density locations are spatially Clustered. There is                

< 1% likelihood that this clustered pattern is due to chance alone. 

Prevalence 
(Case/Population) 

0.64683 -0.00267 0.0006 < 0.001 26.88 
Prevalence rate locations are spatially Clustered. There is < 1% 

likelihood that this clustered pattern is due to chance alone 

 

 

                  

                   
 will always result in a prevalence rate of 0.  The similarity between the control 

and population global G results was also expected considering control individuals were present 

at all 375 of the artificial locations and represented ~97% of the underlying population (Figure 

6.19).  The substantial difference between the Z-scores of the case (or prevalence) and control (or 

population) data also made sense considering that the total number of case individuals 

represented less than 3% of the underlying population.  However, the HH clustering detected by 

the General G was not expected; and, after examining the frequency distributions associated with 

the input data (Figure 6.19), did not appear to be justified.  The frequency distributions of the  
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Figure 6.19   Frequency distributions and descriptive statistics (inset Table) associated with the 

artificial case, control, and population data.    

 

case data, and to a lesser extent, the control and population data, were all positively skewed 

indicating that the majority of the artificial feature locations were characterized by low attribute 

values.  The presence of HH clustering might be justified for individual feature locations 

(detectable through local SA analyses), but in no way seemed to represent the “region-wide 

trend” for any of the artificial data.   

 Unlike their global counterparts, the results of the local SA analyses, specifically those 

analyses performed using ArcMap, did appear justified.  Local SA analyses of the Case and 

Prevalence data only detected HH clustering in areas where case individuals were present 

(Figure 6.18A2,3 and C2,3).  The locations without case individuals present (for both the case and 

prevalence data) were characterized by the Getis-Ord Local G (  
 ) statistic as having non-

significant clustering of low attribute values (Figure 6.18A2 and C2).  The Local Moran’s I (  ) 

statistic characterized these same locations as having non-significant negative SA (Figure 

6.18A3 and C3).  While both the   
  and    statistics detected statistically significant High-High 

(HH) and Low-Low (LL) clustering, their analyses resulted in different HH and/or LL estimates 
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for each of the datasets.  The    statistic appeared to be much more conservative, detecting 

roughly half as many HH or LL clusters as the   
  

statistic.  The case and prevalence results were 

also quite similar for both the   
  

and    statistics. Interestingly, the results of the local Moran’s I 

analysis of the same case data differed substantially based on which program it was calculated in 

(ArcMap vs. OpenGeoDa).  The results of the    analyses of the control and prevalence data also 

differed between programs (Figure 6.18B3,4 and C3-4, respectively), but not nearly as much as 

the case results (Figure 6.18A3,4).  OpenGeoDa’s    analysis of the case data resulted in 

statistically significant positive or negative SA for all 375 feature locations.  OpenGeoDa’s 

Bivariate Local Moran’s I (referred to as “Multivariate LISA” in the software) analysis of the 

case and population data, resulted in the exact same HH, LL, LH, and HL, predictions as 

OpenGeoDa’s Univariate analysis of the case data.  However, the index values were slightly 

different for the Univariate and Multivariate results.   

Overall, the spatial distributions of the weighted case, control, and prevalence data were 

best represented using the local SA available in ArcMap.  The Getis-Ord Local G (  
 ) and Local 

Moran’s I (  ) provided different information about the nature of the spatial autocorrelation 

present in each of the artificial datasets.   The spatial structure of the datasets were therefore best 

explained using the results of both the   
  

and     statistics,  rather than choosing one over the 

other.   With regard to the Local Moran’s I statistic, ArcMap’s    results appeared to be more 

reliable than OpenGeoDa’s Univariate    results. There appeared to be no advantage in 

performing Bivariate    analysis, as the results produced by this analysis in OpenGeoDa were 

suspect and appeared to be inaccurate.  Last, no justification could be found for performing 

global SA analysis in lieu of local SA analyses, as the summary nature of the global statistics 

resulted in generalities that did not appear to be representative of the data on which they were 

based. 
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Chapter 7. Developing Geospatial Analytical Protocols for Coral 

Epizootiology Based on the ESDA Results 

“Quantifying the spatio-temporal changes in coral reef benthic communities 

at regional and decadal scales can lead to a broader understanding of the 

patterns and causes of reef degradation and  provide information which will 

result in more effective management actions (Côté et al. 2005).”  

–  Schutte et al. (2010) 

7.1 Three Tiered Approach to Geospatial Coral Epizootiology 

The purpose of spatial epidemiology is to improve scientific understanding of a given 

disease by incorporating exploratory geospatial analytical methods into a traditional 

epidemiological framework.  As discussed in Chapter 5, a typical spatial epidemiological 

investigation uses exploratory analytical methods to identify spatial patterns and potential 

associations between different attributes in the dataset.  There are numerous types of exploratory 

analytical methods which generally fall into one of the following six categories of Exploratory 

Spatial Data Analysis (ESDA): (1) Mapping and Visualizing data; (2) Point Pattern Analysis; (3) 

Spatial Filtering and Smoothing; (4) Spatial Scan Statistics; (5) Spatial Autocorrelation; and (6) 

Spatial Regression.  While it is usually a good idea to perform more than one type of analysis on 

a given dataset, it is often not practical, or appropriate, to perform numerous types of analysis 

from each of the above ESDA categories.   

As mentioned earlier, one of the objectives of this dissertation was to develop geospatial 

analytical protocols designed to be used by researchers with little to no background in GIS 

and/or spatial analysis.  In order to do this, I began by condensing the six ESDA categories into a 

simplified and more straightforward 3-tiered approach
1
 (see Table 7.1).  I designed the tiers so 

that the types of spatial analysis included in each tier all share the same underlying goal, and the 

complexity and amount of data needed increases with each tier.  The first tier contains spatial

                                                 
1
 The concept of this 3-tiered approach was adapted from Rezaeian et al. (2007) three predominant branches of 

geospatial epidemiology methods: disease mapping, disease clustering, and ecological analysis. 
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Table 7.1 Three Tiered Approach to Geospatial Coral Epizootiology 

3 Tiers of Geospatial Coral Epizootiology Spatial Analysis Types according to ESDA Category Description of the Types of Spatial Information Attained 

(1)  Disease Mapping & Visualization ESDA  1. Mapping & Visualizing Data Visualizing Spatial Distributions 

    •  Mapping Point Locations using points & polygons •  Visualizing the spatial distribution of data locations 

    •  Scaling Point Symbols &/or colors to visualize 

intensity 

•  Visualizing the spatial distribution of data density                                                    

(or intensity of an attribute)   

(2)  Detection & Analysis of Disease Clusters     

 (2A) General Disease Clustering ESDA 2. Point Pattern Analysis Describe the General Spatial Distribution of the Data 

  Global spatial statistics assume the spatial   2.1 Centrographic Statistics Shows the Location & Spatial Distribution of Point Patterns 

     distribution of the data are homogeneous   •  “Mean Center” estimates •  Identifying the central focal point of the points 

   & results generally have no spatial output   •  Median Center (MdnCntr) •  Useful when outliers are influencing the mean center 

     •  Minimum Convex Polygons (MCP) •  Simplest method for estimating the Home Range of an animal 

     •  Standard Distance & Deviation Estimates •  Estimate the general distribution of the data around a central focal point 

    2.2 Distance Statistics Test hypotheses regarding the spatial distribution of points 

     •  Nearest Neighbor Analysis (Nna) •  Examine spatial dependence (clustering or dispersion) at a given scale 

     •  Ripley’s K (K) •  How spatial dependence changes with distance & scales of measurement 

   ESDA 5. Spatial Autocorrelation (SA) Whether or Not Clustering is Present 

    5.1 Global SA Analyses Whether or not Spatial Autocorrelation (SA) is present region-wide 

     •  Getis-Ord General G •  Measures the degree of clustering for either “high” or “low” values 

     •  Moran’s I •  Measures the amount of SA based on feature locations & attribute values 

 (2B) Specific Disease Clustering ESDA 3. Spatial Filtering & Smoothing The Presence, Degree, & Location of Clusters 

  Local spatial statistics  assume the spatial    •  Single Kernel Density Estimates (KDEs) •  Density, Intensity, and Probability estimates 

  distribution of the data are heterogeneous   •  Dual KDEs •  Prevalence, Odds Ratios, & Relative Risk Estimates 

  & there is generally spatial (mappable)  

output associated with the results. 
  •  Dual KDEs with Monte Carlo Simulations •  All of the above plus Significant Clustering Areas 

  ESDA 4. Scan Statistics Used to Detect Outbreaks through Spatial Cluster Analysis 

     •  Spatial Scan Statistics •  changes in Cluster Size, Significance, & Relative Risk (RR)  in a given area 

   ESDA 5. Spatial Autocorrelation (SA) Whether or Not Clustering is Present 

    5.2 Local SA Analyses Whether or not SA is present, & if so Where is it Occurring 

     •  Getis-Ord Local G (  
 ) •  Identifies where “high” or “low” values cluster spatially 

     •  Local Moran’s I  (Ii) •  Identifies the locations of high & low clusters, as well as spatial outliers 

(3) Disease Modeling, Prediction,                            

& Ecological Analysis 

ESDA 4. Scan Statistics Used to Detect Outbreaks through Temporal Cluster Analysis 

   •  Space-Time Scan Statistics •  changes in Cluster Size, Significance, & RR in a given area over time 

     •  Temporal Scan Statistics •  changes in Cluster Size, Significance, & RR in over a specified time period 

   ESDA 6. Spatial Regression Analyses (RA) Performs Local RA without assuming Spatial Homogeneity 

     •  Ordinary Least Squares (OLS) Regression •  OLS results output are used to build the GWR model 

     •  Geographically Weighted Regression (GWR) •  Assesses spatial heterogeneity between independent & dependent variables 
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methods and visualization techniques used to visualize the spatial distribution of diseased corals 

through the creation of different types of maps.  The second tier contains spatial methods that are 

designed to detect and analyze spatial clusters of diseased individuals.  Last, the third tier 

contains spatial methods used to model the relationship between the spatial distribution of 

diseased corals and other spatial, temporal, and ecological variables, in order to better understand 

how these variables influence the spatial nature of a given coral disease, test various hypotheses, 

and possibly even predict future disease outbreaks.  The following sections provide a brief 

overview of the types of spatial analysis included in all three tiers that I recommend using based 

on the results of the ESDA techniques used on my artificial cluster dataset, which were described 

in depth in the previous chapter (Chapter 6).   

 Tier 1:  Disease Mapping and Visualization 7.1.1

Maps are an important first step in any spatial epidemiological investigation because they 

allow the spatial distribution of phenomena (such as the locations of disease corals) to be 

visually observed  (Câmara et al. 2008).  In some cases, showing where an event is occurring 

may also provide insight as to why the event is occurring  (Waller and Gotway 2004).  It is 

important to note that the visualization options for both the map and the representation of the 

data locations within the map should be based on the nature of the data, the type of study, and the 

overall purpose of the map (i.e. what message is the map intended to convey).   

Maps of non-weighted data locations are convenient in that both case and control 

locations can be displayed in the same map (Figure 7.1A).  However, they can be misleading 

because they imply that all the individuals present at case locations are case individuals, which is 

often not the case.  Maps in which the locations are weighted by the number of individuals 

present provide a more realistic depiction of the underlying densities.  Unfortunately, case and 

control densities cannot be displayed on the same map without overlapping values being 



 

167 

obscured (Figure 7.1C).  Prevalence maps offer a way of visualizing case density while also 

accounting for the underlying population density in the same map (Figure 7.1B).  The drawback 

of prevalence maps is that, all information regarding the population densities of non-case 

locations is lost.  Following this logic, point-based visualization techniques are recommended for 

either depicting feature locations on their own, or when dealing with non-weighted data (Figure 

7.1A).  When weighted datasets are available, separate polygon-based mapped depictions of case 

prevalence (Figure 7.1B), and case and control density should be used (Figure 7.1C).  

 

Figure 7.1  (A) non-weighted Case and Control feature locations displayed in the same map.  

(B) Prevalence Map, weighting each feature by case prevalence estimates. (C) Case (C1) and 

Control (C2) features locations weighted by their respective attribute values. 
 

 Tier 2:  Detection and Analysis of Disease Clusters 7.1.2

The detection and analysis of spatially clustered diseased corals is a crucial component of 

most spatial epidemiological investigations because these disease “hotspots” can then be further 

examined using more traditional epidemiological methods to investigate the epidemiology, 

etiology, pathology, and pathognomy of the disease (Berke 2004).  This “hotspot-to-causation” 

approach enables a more comprehensive and less subjective way for epidemiologists to examine 

the spatial aspects of both the disease transmission and infection rates (Chaput et al. 2002). 
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There are two types of cluster detection, which divides this tier into the following two 

sub-tiers: (2A) General Disease Clustering; and (2B) Specific Disease Clustering.  General disease 

clustering methods use global statistics to detect and analyze the “overall clustering tendency of 

the disease incidence in a study region” (Rezaeian et al. 2007).  Whereas, specific disease 

clustering methods use local statistics to detect and analyze the locations of specific disease 

clusters within the study region.   

 Tier 2A: General Disease Clustering 7.1.2.1

The following ESDA categories contain types of spatial analysis that are considered to be 

global statistics: ESDA Category 2, Point Pattern Analysis (PPA); and ESDA Category 5, Spatial 

Autocorrelation (SA).  Both of the PPA sub-categories, (centrographic  statistics and distance-

based statistics) and one of the SA sub-categories (global SA) are considered to be measures of 

general disease clustering because the types of spatial analysis included within each of them are 

used to search for region-wide trends.  Of the eight types of analysis included among these three 

sub-categories (see Table 7.1), only the Ripley’s K statistic was considered to be robust enough 

to recommend using on coral health data.   

The Ripley’s K Statistic 

The Ripley’s K statistic is a global measure designed to determine the spatial scale at 

which clustering is present on the landscape, but it does not identify where on the landscape the 

clustering is occurring (Gatrell et al. 1996; Lancaster and Downes 2004; Marcon and Puech 

2009; Bayard and Elphick 2010).  In many types of spatial analysis, the scale or resolution of the 

data tends to have a strong influence on the appearance of the resulting analyses.  The Ripley’s K 

statistic can be used to study how the spatial dependence present within a given set of points 

changes across multiple distances (Bailey and Gatrell 1995; Lentz et al. 2011).   
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Unlike, the other PPA statistics, the spatial distribution of the underlying population can 

also be taken into account when studying case data, by using the difference function (D) to 

subtract the Ripley’s K population estimates from the Ripley’s K case estimates.  The Ripley’s K 

results provided new information about how the different distance scales affected the estimated 

spatial dependence (clustering or dispersion) of both the non-weighted and weighted artificial 

case and population data.  Additionally, numerous hypotheses regarding the spatial distribution 

of both the artificial case and population data were able to be tested through the use of the 

difference function or by simply plotting different combinations of the Observed K and 

confidence interval results.   

The Ripley’s K statistic has been used in previous coral disease studies to facilitate a 

better understanding of the etiologies of their respective diseases by examining the spatial 

disease distribution, and testing hypotheses regarding the mode of transmission and infection 

(Jolles et al. 2002; Foley et al. 2005; Zvuloni et al. 2009).  The major drawback of the Ripley’s K 

statistic is that it provides no spatial output of where the clustering is occurring.  For this reason, 

I recommend that the Ripley’s K statistic only be used in conjunction with other ESDA 

techniques that provide spatial output (such as those included in the following sub-tier). 

 Tier 2B: Specific Disease Clustering 7.1.2.2

The following ESDA categories contain types of spatial analysis that are considered to be 

local statistics: ESDA Category 3, Spatial Filtering & Smoothing; ESDA Category 4, Scan 

Statistics; and ESDA Category 5, Spatial Autocorrelation (SA).  All of the types of Kernel 

Density Estimates (KDEs) included under the Spatial Filtering & Smoothing ESDA category are 

considered Specific Disease Clustering methods, given that they all produce mappable results 

that provide spatial estimates of disease surfaces.  Of the three types of Scan Statistics in ESDA 

Category 4 (Spatial, Temporal, and Spatio-Temporal), only the Spatial Scan Statistical methods 
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were included in this tier; the temporal nature of the two other scan statistics makes them better 

suited for Tier 3’s disease modeling and predictive analyses.  Last the types of analysis included 

under the second SA sub-category (local SA) was considered to be measures of specific disease 

clustering because both types of spatial analysis included within this sub-category are used to 

locate disease clusters.  Of the six types of analysis included among these ESDA categories (see 

Table 7.1), only the Dual KDEs performed in CrimeStat were excluded from the recommended 

methods of detecting the locations of disease clusters in coral health data.   

Spatial Kernel Density Estimates (KDE) 

Spatial kernel density estimates (KDEs) are often computed using a process known as 

“spatial filtering,” which is a type of non-parametric, graphical analysis used to calculate the 

predicted value at a given point based on the values of the surrounding data points (Carlos et al. 

2010; Cai et al. 2011).  These spatial filters use probability distribution functions (known as 

“kernels”) to smooth some of the variability and noise in the dataset without losing the local 

features of the data, resulting in the creation of smooth, continuous maps of density estimates 

(Williamson et al. 1998; Waller and Gotway 2004; Anselin et al. 2006b; Carlos et al. 2010; Cai 

et al. 2011).   

Spatial KDEs require the user to define the size of two spatial parameters:  the size of the 

filter radius (also referred to as “bandwidth”), and a grid of the study area with a defined cell 

size.  Spatial parameter selection is a critical first step as the finest bandwidths (for example the 

immediate area around one coral colony) will lack the potential to identify local areas of disease 

clustering.  Whereas, parameters that are too coarse will overestimate the disease surface and 

often under estimate the severity of localized clusters (Hall and Marron 1991; Hazelton 1996; 

Jones et al. 1996; Danese et al. 2008).  The size of the grid cell is also important because it is 

what enables identification of the clustering patterns, if the grid cell is too small the interpolation 
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will become jagged, while an excessively large grid cell will lose the fine-scale detail (Rodgers 

and Carr 2002; Wiegand and Moloney 2004; Chainey and Ratcliffe 2005; Danese et al. 2008; 

Ratcliffe 2010).   

KDEs can be performed as a univariate analysis of a set of point locations, or as a 

multivariate analysis of 2 sets of point locations.  The former type of analysis is referred to as a 

“single” KDE and is most commonly performed on data regarding the locations of case events; 

while, the latter is referred to as a “dual” KDE & can be used on various types of “numerator”& 

“denominator” data.  “From an epidemiological perspective, kernel estimation is of most value in 

estimating the intensity of one type of event relative to another” (Carlos et al. 2010); such as, 

comparing the spatial densities of case locations to that of the underlying population at risk. This 

makes it possible to differentiate “real” case (disease) clusters and areas at greater risk of 

becoming diseased.  Conversely,  single KDEs of just case data run the risk of identifying false 

clusters resulting from underlying population dynamics (Bithell 1990; Rushton and Lolonis 

1996; Levine and Associates 2004; Waller and Gotway 2004; Anselin et al. 2006b; Smith and 

Bruce 2008; Carlos et al. 2010). 

When there is only data on the diseased corals, I recommend using CrimeStat’s single 

adaptive-distance KDEs with an adaptive bandwidth equal to no more than half the total number 

of disease locations (see Figure 7.2A).  However, when there is data on both the diseased corals 

and the underlying coral population at risk, I recommend using the DMAP’s fixed-distance dual 

KDEs, using an Optimized Bandwidth (calculated using the hopt  statistic on the locations of the 

population data),   and 1,000 Monte Carlo simulations (see Figure 7.2B) .  In both cases the grid 

cell resolution should be slightly larger than the size of each survived data point.  For example, 

the points in the artificial dataset represent 10x30m transects, and the optimum grid cell size was 

found to be 50m
2
.   
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Figure 7.2  Recommended spatial filtering and smoothing methods based on data availability.  

(A) When only case data are available, adaptive-distance single Kernel Density Estimation 

(KDE) should be performed in CrimeStat using Quartic kernel distribution, a spatially adaptive 

bandwidth greater than or equal to half the total number of case locations, and then displayed in 

ArcMap using the Stretched density symbology setting.  (B) When both case and population data 

are available, fixed-distance dual KDEs should be performed in DMAP, using 1000 Monte Carlo 

Simulations.  The Optimized Bandwidth (hopt) estimation method should be used in conjunction 

with the population location data to calculate the appropriate “filter radius” for both the 

numerator (case) and denominator (population) data in DMAP.  The clustering rates (case 

prevalence) should then be displayed in ArcMap using either the Stretched or Classified (shown 

above) symbology, with the areas with statistically significant clustering depicted as contours.   

 

Spatial Scan Statistic 

Spatial Scan Statistics are one of the most common types of spatial analysis used by 

spatial epidemiologists to detect the locations of current disease clusters (Kulldorff et al. 2005; 

Robertson and Nelson 2010).  As mentioned previously, there are three main types of scanning 

statistical analyses provided in SaTScan: purely spatial, purely temporal, and space-time analyses 

(Kulldorff 2010).  Purely spatial scanning statistical analysis takes only the locations (and 

potentially weights) of the numerator (case) and denominator (population) into account, ignoring 
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any temporal information that may be included in the dataset.  Overall the results based on either 

the No Geographical Overlap (NGO) or No Cluster Centers in Other Clusters (NCCOC) cluster 

detection criteria were found to more accurately represent the artificially clustered data; resulting 

in identical output for the Bernoulli model’s analysis of the non-weighted data,  and similar 

output for the Poisson model’s analysis of the weighted data.    

While SaTScan’s scanning statistics offer quick results indicating the locations of 

significant disease clusters, it is important to note that this software can only be used when data 

are available for both the diseased corals and the underlying population at risk.  Additionally, the 

results only indicate the locations of significant disease clusters, providing no information about 

any possible spatial variation present in the disease distribution.  For this reason SaTScan’s 

purely spatial analysis should either be used in conjunction with the other cluster detection 

methods as a means of explaining a given disease distribution, or it used at the beginning of a 

study so that microbial analyses can be performed using a priori knowledge of the locations of 

significant disease clusters.  However, it should not be used to replace any of the other cluster 

detection and analysis methods, or even the methods from Tier 1; as the SaTScan analyses alone 

do not provide enough information on the spatial nature of a given disease outbreak. 

  Local Spatial Autocorrelation (SA) Analyses  

Spatial autocorrelation (SA) is a statistical measure of the degree of spatial association 

between the geographic locations and attribute values associated with each feature in a given 

dataset (Goodchild 1988; Fotheringham et al. 2000,2002; de Smith et al. 2009; Griffith 2009; 

Myint 2010; Fischer and Wang 2011).  Spatial patterns in which a feature with a given attribute 

value are surrounded by features with similar attribute values (such as a location with a high 

number of diseased coral colonies surrounded by locations that also have high numbers of 

diseased colonies present) show “positive” spatial autocorrelation.    
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Conversely, when the attribute values associated with neighboring features tend to be 

more dissimilar than the values of features located further away (such as a location with a high 

number of diseased coral colonies surrounded by locations that have little to no diseased colonies 

present), then the spatial pattern as a whole shows “negative” spatial autocorrelation.  Last, when 

the distribution of the attribute values appear to be independent of the geographic location of 

their associated features, suggesting the attribute values and feature locations are not spatially 

autocorrelated, but rather appear to have a random spatial distribution. 

Unlike the previous two types of specific disease cluster detection and analysis methods, 

local spatial autocorrelation (SA) methods require that the point data be transformed into a 

continuous polygonal surface through the creation of Thiessen Polygons.  Additionally, local SA 

methods require weighted data, as SA analyses involving attribute values that are all equal to 

either 1 or 0 (which is usually the case with presence/absence data of non-weighted locations) 

usually results in either unreliable or even unsolvable results (ESRI 2009h).   While local SA 

analyses can be performed using either ArcMap or OpenGeoDa, the results of the local SA 

analyses of the artificial cluster dataset found the spatial distributions of the artificial case, 

control, and case prevalence data were best represented by the local SA analyses performed in 

ArcMap.  Additionally, I recommend using both the Getis-Ord Local G (  
 ) and the Local 

Moran’s I (  ), as they each provided different information about the nature of the spatial 

autocorrelation present in each of the datasets. 

 Tier 3:  Disease Modeling, Prediction, and Ecological Analysis 7.1.3

Disease modeling, prediction, and ecological analyses are grouped together in the third 

and last tier because they all build on the results from the previous two tiers (primarily the results 

from Tier 2).  For example once the spatial distribution of a given disease has been identified, 

models can be used to try to explain why the disease is distributed this way, and test hypotheses 
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about other factors that may be influencing the spatial distribution of the disease.  Once these 

models have been calibrated such that they appear to be accurately representing the current 

disease distribution, additional temporal information can be added to try to identify both past and 

future disease outbreaks.   While none of the types of analysis that fall under this tier were tested 

in this dissertation (due to the limited nature of the artificial dataset), recommendations can still 

be made as to how they should be used with respect to coral health data.   

Space-Time and Temporal Scan Statistics 

SaTScan’s scanning statistics offer quick results indicating the presence of significant 

disease clusters, however, this software can only be used when data are available for both the 

diseased corals and the underlying population at risk.  As mentioned in the previous section, 

SaTScan should not be used to replace other methods in this Tier, unless there is not enough data 

available to perform the other analyses.  For example, say a researcher has a coral health dataset 

in which data were collected on both the diseased and underlying population of corals at risk, in 

a given location over a specified time period (days, weeks, months, years, etc.), but no spatial 

information was collected on any of these corals.  In this situation, out of all the types of analysis 

discussed in this dissertation SaTScan’s Purely Temporal analysis would be the only type of 

analysis possible.  Or if a researcher had a coral health dataset that contained both spatial and 

temporal information on diseased and the underlying coral population at risk for a given location 

over a specified period of time, but the dataset was not suitable for spatial regression analyses 

because it contained less than 300 total data points and/or no ecological data.  In this case, given 

that the dataset does not contain enough feature locations or independent variables to perform a 

spatial regression analysis or any other type of ecological analysis, then SaTScan’s Space-Time 

scanning statistic would likely be the best type of analysis to model changes in disease clustering 

over time, and possibly even predict the locations of future disease outbreaks.   



 

176 

Spatial Regression  

Spatial regression is often the final step in ESDA because it goes beyond just 

visualization and cluster detection, allowing the relationships between different spatial variables 

to be modeled in order to better explain which factors (independent variables) have the most 

influence on the spatial nature of the dependent variable.  Well specified regression models can 

be used to explain the phenomena of interest, test hypotheses, and potentially even predict future 

outcomes (ESRI 2009f; Rosenshein et al. 2011). 

Spatial regression is designed to evaluate and model the spatial relationship between two 

or more attributes associated with a minimum of several hundred-feature locations (ESRI 

2009d).  Regression techniques are used to model the relationship between a dependent variable 

and one or more independent variables.  The dependent variable is the variable or process that is 

trying to be understood (such as the spatial distribution of diseased corals), and the independent 

variable(s) are factors (such as other coral diseases, environmental data, anthropogenic stressors, 

etc.) that might help explain the spatial distribution of the dependent variable (Charlton and 

Fotheringham 2009).   In this way spatial regression models could be used to associate disease 

clusters with surrounding environmental factors. 

Ecologic Analysis 

Ecologic Analysis refers to methods which look for associations between disease 

incidence (i.e. coral disease) and other social (i.e. other coral diseases, or competition for space 

among corals, etc.), environmental (surface currents, sea surface temperatures, wind direction, 

salinity, etc), and anthropogenic (human population size, pollution, frequently visited tourist 

sites, etc.) covariates (Rezaeian et al. 2007).  Given this definition, ecologic analyses can be 

performed during spatial regression.     
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7.2 Proposed Analytical Protocols for Geospatial Coral Epizootiology 

Geospatial methods are both data and situational dependent.  For this reason, before 

performing any type of spatial analysis a conscious, informed decision needs to be made 

regarding the type of analysis (and the spatial parameters that will be used during the analysis) 

that is most appropriate for the given study.  The following sections provide brief descriptions of 

the different analytical protocols I have developed using this three tiered approach to geospatial 

coral epizootiology.  These protocols have been designed to be used on existing coral health 

datasets.   

 Recommended Protocols When Only Coral Disease Data are Available  7.2.1

At present, many investigations examining spatial data concentrate (and more 

importantly, collect) only on the variable of interest.  In the case of coral disease, this would be 

the location of the diseased coral.  However, without similarly collected denominator data, it is 

impossible to know if the pattern revealed by the analysis is a disease “hotspot,” or simply 

indicative of locations with higher densities of coral (i.e. the more coral there is, the more 

diseased corals are likely to be found).   

Despite the potential for misleading results, existing datasets containing only coral 

disease (case) data should not be abandoned all together.  Table 7.2 provides the types of spatial 

analysis I recommend performing on either non-weighted or weighted case data.  In which “non-

weighted case data” refers to datasets that contain presence/absence type data providing only the 

locations in which a given coral disease was found to be present, but with no indication of how 

many corals were found at this location.  Whereas, “weighted case data” refers to datasets that 

contain information on the number (or percentage) of diseased coral colonies at each location.   

In both cases, the researcher should begin with Tier 1, by creating a map to visualize the 

spatial distribution of the diseased corals.  Non-weighted case data are best represented using 
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point-based maps, in which all the diseased locations are represented using the same cartographic 

symbol (for an example see how the non-weighted artificial case locations were depicted by 

filled red dots in Figure 7.2A1).  Conversely, when weighted case data are available, I 

recommend using polygon-based maps, in which each polygon represents the location where 

diseases corals were found to be present, and the number of diseased corals within each location 

is depicted using different shades of the same color; for an example see how the weighted 

artificial case locations were depicted using different shades of red in Figure 7.1C1.     

Next, the researcher should move on to Tier 2’s recommended methods for detecting and 

analyzing disease clusters (listed in Table 7.2).   First Ripley’s K analyses should be performed 

on the non-weighted and (if possible) weighted versions of the coral disease data.  The results 

from these analyses should then be brought into a spreadsheet and graphing program (such as 

Microsoft’s Excel).  The Observed K [L(d)] values should then be transformed into Normalized 

K [L(d) – d ] values by subtracting the distances (d), also referred to as the “Expected K” values; 

likewise, the upper and lower confidence intervals (CI) should also be transformed into 

Normalized CI [CI – d ].  Datasets which contain only non-weighted coral disease data should 

then plot the Normalized Observed K values [L(d)Cases – d] and Normalized CI [CI Cases – d ] for 

their data on the y axis, against the tested distance (d) on the x axis (resulting in a graph similar 

to the one shown in Figure 6.6A on page 136). The resulting plot can then be used to determine 

the following: (1) whether the locations with disease present appear to be spatially aggregated 

(clustered) or spatially dispersed (not clustered); (2) does their anticipated spatial distribution 

change based on what distance it is calculated at; and (3) is any statistically significant 

aggregation or dispersion present and if so what distances does it occur at? 
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Table 7.2    Recommended Types of Spatial Analyses when Only Coral Disease (Case) Data are Available.   

Geospatial Coral Epizootiology Tiers & ESDA Types non-Weighted Case Data Weighted Case Data 

(1)  Disease Mapping & Visualization
1   

 •  Point-based maps (using circular, dot-shaped symbols) Dots of uniform size & color  (ex. filled dots)                  
(see Figure 7.2A1) 

— 

 •  Polygon-based maps (using Thiessen Polygons) — Color-ramp polygon shading based on weight            
(see Figure 7.1C1) 

(2)  Detection & Analysis of Disease Clusters 

(2A)  General Disease Clustering (no spatial output)  

2.  Point Pattern Analysis (PPA) Distance Statistics1 

  

 •  Ripley’s K [L(d)]                                                                             

Results Ripley’s K analyses are plotted in excel using                                         

normalized Observed K values [L(d) – d],                                     

normalized upper & lower Confidence Intervals [CI - d] 

normalized Expected K values of [d – d] or y = 0 

 

Plot distance (x axis) vs. the following: 

L(d)Cases – d  & CICases – d     (see Figure 6.6A) 

 

 

Plot distance (x axis) vs. the following: 

       L(d)wCases – d  &  CIwCases – d    (see Figure 6.6B) 

       L(d)wCases – d  &  CICases – d      (see Figure 6.8A) 

       L(d)Cases – d    &  CIwCases – d    (see Figure 6.9A) 

(2B)  Specific Disease Clustering (spatial output) 

3.  Spatial Filtering & Smoothing 

  

 o Single Kernel Density Estimates (sKDEs) 2 sKDEs performed on Case locations using Quartic distribution spatial kernels & Relative Densities output units  

 •  Adaptive distance bandwidths select “Adaptive” as the choice of bandwidth & set the minimum sample size equal to half  the total # of case locations 

  make sure the “use weighting variable”  

box is not selected 

(see Figure 7.2A2) 

make sure the “use weighting variable” box is selected 

& that the data column containing the weighted data 

are selected under “Weight” on the input data screen 

(see Figure 7.2A3) 

5.  Spatial Autocorrelation (SA)   

 o Local SA analyses
 1

 

•  Getis-Ord Local G (  
 ) 

•  Local Moran’s I  (  ) 

 

— 

Thiessien Polygons generated from Case Locations 

The resulting index values, cluster types, & cluster 
significance (p-values)  for each analysis are mapped 

(see Figures  6.18A2-3) 

Superscript numbers indicate which software to perform the analysis in: 1 = ArcMap   2 = CrimeStat 
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Datasets that contain weighted coral disease data should compare the results of the above 

plot based on the non-weighted version of their data to the same type of plot using the weighted 

version of their data, in which L(d)wCases – d and CI wCases – d  are plotted against d (resulting in a 

graph similar to the one shown in Figure 6.6B on page 136).  By comparing these two plots, the 

researcher can see what effect, if any, taking the underlying diseased coral colony data into 

account has on the anticipated spatial distributions of the given coral disease.  This researcher 

could then go on to test additional hypotheses by plotting the Normalized Observed K values of 

either the weighted versions of their data with the Normalized CI values from their non-weighted 

data, and visa versa.  For example, the null hypothesis that the spatial distribution locations 

weighted by the number of diseased colonies within them  would not be significantly different 

than the underlying spatial distribution of just the locations would be tested by plotting the 

Normalized Observed K values for the weighted data [L(d)wCases – d] along with the Normalized 

CIs for the non-weighted data [CI Cases – d ] (see Figure 6.8A on page 138).  In order for this null 

hypothesis to be accepted the line representing the   Normalized Observed K values for the 

weighted data must fall inside the Normalized CIs for the non-weighted data.  Or by plotting the 

opposite combination of the Normalized Observed K values for the non-weighted data [L(d)Cases 

– d] along with the Normalized CIs for the weighted data [CI wCases – d ] (see Figure 6.9A on 

page 140), the null hypothesis that the spatial distribution of the locations weighted by the 

number of diseased corals within them would be more clustered or dispersed through chance 

alone.  In this case, the null hypothesis would only be accepted if the Normalized Observed K 

values for the non-weighted data did fall within the confidence intervals based on the weighted 

data.   

Once the researcher has finished the Ripley’s K analyses, they should go on to use 

specific disease clustering methods in order to see where exactly these disease clusters are 
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located.  First the researcher should perform a single kernel density estimate (KDE) using an 

adaptive distance bandwidth based on half the total number of diseased locations.  The only 

difference in the analytical procedure for a researcher who has non-weighted disease data and a 

researcher who has weighted disease data would be whether or not they select the “use weighting 

variable” box in CrimeStat.  The results from this analysis would then be brought into ArcMap to 

be displayed using a stretched symbology, in which the darkest areas represent locations with the 

highest coral disease densities (see Figures 7.2A2 and 7.2A3).    

Depending on how satisfied they were with the results of the single KDE, the researcher 

with weighted coral disease data, also would then have the option of also performing Local 

Spatial Autocorrelation (SA) analysis on the weighted version of their dataset.  If they decide to 

do this, their disease location data would need to be transformed from point-based data into 

Thiessien polygons which can be done using the XTools extension in ArcMap.  I then 

recommend performing both the Getis-Ord Local G (  
 ) and Local Moran’s I (  ) analyses, 

which are referred to in ArcMap’s “Mapping Clusters” toolset as “Hot Spot Analysis (Getis-Ord 

Gi*)”  and  “Cluster and Outlier Analysis: Anselin’s Local Moran’s I,” respectfully.  The results 

of both of these analyses offer additional information about the spatial nature of the disease 

clustering, such as whether each location would be characterized as having: Positive SA, and if 

so does the clustering of similar values appear to represent a “hotspot” or a “coldspot”; or 

Negative SA, and if so does the spatial outlier appear to be surrounded by higher or lower values 

than its own;  and last, whether there is any statistical significance associated with the type of SA 

present.   

Performing these additional Local SA analyses does add more work, but given the limited 

amount of information that can be obtained from doing just a single KDE, I would recommend 

performing both the   
  and    when working with weighted data containing only coral disease 
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information.  Additionally, while it is possible that some form of ecological analysis could be 

performed on case only datasets, I would not recommend spending too much time on such 

analyses.  This is because without information on the underlying coral population at risk, there is 

no way of knowing whether or not the clusters detected by the Tier 2 analyses represent real 

disease clusters or are simply reflections of density changes in the underlying coral population. 

Thus, the validity of any correlations found during a Tier 3 ecologic analysis using case-only 

data would be questionable at best. 

 Recommendations When Both Coral Disease and Population Data are 7.2.2

Available 

When a given coral health dataset contains data on both the diseased corals as well as the 

underlying coral population at risk, there are not only more options and flexibility in the types of 

analysis the researcher choses to perform, but the results of these analyses are considered far 

more robust and reliable when compared to the case-only versions of the same analysis.  Table 

7.3 provides the types of spatial analysis I recommend performing on either non-weighted or 

weighted datasets containing both numerator and denominator data.  In which the “non-weighted 

data” column refers to datasets that contain presence/absence type data providing only the 

locations in which a given coral disease was found to be either present (case locations) or absent 

(control locations), but with no indication of how many diseased and/or non-diseased coral 

colonies were present at each location.  Conversely, the “weighted data” column refers to 

datasets that contain disease prevalence data providing not only the locations in which a given 

type of coral was found, but also included on the total number of diseased and non-diseased coral 

colonies present at each location. 

As with the case data, I recommend that the researcher begin with Tier 1, by creating a 

map to visualize the spatial distribution of the diseased and non-diseased corals.  Non-weighted 
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data are best represented using point-based maps, in which all the locations are represented using 

the same cartographic symbol, but use different colors to differentiate between the case and 

control locations (see Figure 7.1A).  Conversely, when weighted data are available, I 

recommend using polygon-based maps, in which each polygon represents the location where the 

given type of coral was found.  The weighted data can be visualized as either one Case 

Prevalence map (Figure 7.1B), or as separate Case and Control density maps (Figure 7.1C), 

depending on the type of information the researcher is interested in.  

 Next, the researcher should move on to Tier 2’s recommended methods for detecting and 

analyzing disease clusters (listed in Table 7.3).   First Ripley’s K analyses should be performed 

on the non-weighted and (if possible) weighted versions of the coral disease and underlying coral 

population data.  The same normalization procedure that was described for the case-only data 

should be repeated for the weighted and/or non-weighted versions of the disease and population 

data.  The same Ripley’s K plots described for the case-only data also apply to the case data here, 

and can also be performed on the population data.  The major advantage of having both the coral 

disease and population data are that the Difference function (D) can be used to examine the 

spatial distribution of the coral disease data after the spatial distribution of the underlying 

population has been accounted for.  For the non-weighted coral data this is done by subtracting 

the Normalized Observed K values for the coral population locations from the Normalized 

Observed K values for the coral disease locations, such that D=[L(d)Cases – d] – [L(d)Population – d].  

This D is then plotted against the tested distances (d), and using the Normalized CI for the 

Population data, resulting in a graph similar to the one shown in Figure 6.7A on page 137.  For 

weighted coral data, this same process would then be repeated using the Normalized Observed K 

values for the weighted disease and population data, resulting in a graph similar to Figure 6.7B 

on page 137.   
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Table 7.3    Recommended Types of Spatial Analyses when Both Coral Disease and Underlying Coral Population Data are Available.   

Geospatial Coral Epizootiology Tiers & ESDA Types non-weighted data  weighted (locations weighted by # of  individuals) 

(1) Disease Mapping & Visualization1 Case & Control locations are in the same map Case & Control densities are in separate maps 

 •  Point-based maps (using circular, dot-shaped symbols)    Dots of uniform size in  2 different colors (see Fig. 7.1A) — 

 •  Polygon-based maps (using Thiessen Polygons)  — 

 

Color-ramped shading based on weight (see Fig. 7.1C) 

or  

Show weighted Case & Population data in the same map  

by creating a Case Prevalence Map (see Fig. 7.1B) 
(2)  Detection & Analysis of Disease Clusters 

(2A)  General Disease Clustering (no spatial output)   

 2.  Point Pattern Analysis (PPA) Distance Statistics1 

•  Ripley’s K  [L(d)] 1                                                                              

Separate estimates are done for the Case & Population data 

Results Ripley’s K analyses are plotted in excel using  

normalized Observed K values [L(d) – d],  

normalized upper & lower Confidence Intervals [CI – d], 
normalized Expected K values of [d – d] or y = 0 

(see Figures 6.7A & 6.6A,C,  respectfully) 

Create plots of distance (X axis) vs. the following: 

D = [L(d)Cases – d] – [L(d)Population – d]  & CIPopulation – d 

L(d)Cases – d  & CICases – d                

L(d)Population – d  & CIPopulation – d       

 

(see Figures 6.7B, 6.6B,D, 6.8A,B, & 6.9A,B, respectfully) 

 Create plots of distance (X axis) vs. the following: 

D = [L(d)wCases – d] – [L(d)wPopulation – d] & CIwPopulation – d 

L(d)wCases – d  & CIwCases – d  

L(d)wPopulation – d  & CIwPopulation – d  

L(d)wCases – d  & CICases – d  

L(d)wPopulation – d  & CIPopulation – d  

L(d)Cases – d  & CIwCases – d  

L(d)Population – d  & CIwPopulation – d  
(2B)  Specific Disease Clustering (has spatial output) 

  3.  Spatial Filtering & Smoothing2 (see Figure 7.2B2) (see Figure 7.2B3) 

  •  Dual Fixed Distance KDEs  with Monte Carlo 

simulationsusing bandwidths calculated using the hopt statistic 

Performed simultaneously on the locations of the Case 

(numerator) & Population (denominator) data 

Performed simultaneously on the weighted locations of the  

Case (numerator) & Population (denominator) data 

4.   Spatial Scan Statistics3 Bernoulli probability model compares the spatial 
distribution of the Case locations (disease present) to the 

distribution of the Control locations (disease absent)                           

(see the Bernoulli model’s NGO results in Figure 6.17) 

Poisson probability model compares the spatial distribution of 
the Case locations weighted by # of individual cases present 

at each location to the  spatial distribution of the Population 

locations weighted by the  total # of individuals                            
(see the Poisson model’s NGO results in Figure 6.17) 

5.   Spatial Autocorrelation (SA) 1  Thiessien Polygons generated from Population Locations 

 o Local SA analyses 

•  Getis-Ord Local G (Gi
*) 

•  Local Moran’s I  (Ii) 

— 

 

Performed separately on the Case, Control, & prevalence (case 
individuals/total individuals).  The resulting index values, 

cluster types, & cluster significance (p-values)  for each 

analysis are then mapped (see Figure 6.18 A2-3, B2-3, & C2-3) 

(3)  Disease Modeling, Prediction, & Ecological Analysis 

6.   Spatial Regression1 

  

 •  Ordinary Least Squares (OLS) Regression in conjunction 
with Geographically Weighted Regression (GWR) 

— Used to compare the spatial distribution of the weighted Case 
data to the spatial distribution of other variables 

Superscript numbers indicate which software to perform the analysis in:    1 = ArcMap       2 = DMAP           3 = SaTScan    
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While the Ripley’s K plots based only on case or population data are useful and can be 

used to test various hypotheses, it is the plots based on the Difference Function that offer the  

most important insight into the spatial nature of a given coral disease outbreak.  When time is an 

issue I recommend skipping the various versions of the Normalized Ripley’s K data in which the  

case and population data are plotted separately.  Instead, just use the difference function to create 

one plot that shows the spatial distribution of the coral disease data after the spatial distribution 

of the underlying population has been accounted for.   

Once the researcher is satisfied with the results of their General Disease Clustering 

analyses, they should move on to Specific Disease Clustering methods in order to see where 

exactly these disease clusters are occurring.  I recommend starting with performing a dual fixed-

distance kernel density estimate (KDE) in DMAP, using an Optimized Bandwidth (calculated 

using the hopt statistic and the locations from the population data) and 1,000 Monte Carlo 

simulations.  The only difference between performing the dual KDE on the non-weighted and 

weighted datasets is that the input files used for the numerator (diseased locations) and 

denominator (population locations) for the non-weighted data will all have a weight of 1 in the 

weight column. Whereas, the weighted data will have the number of diseased colonies and total 

number of colonies for each location in the weight columns of the numerator and denominator 

input files, respectively. By displaying the DMAP results in ArcMap using the technique 

described in the legend of Figure 7.2, the researcher will not only have a map showing 

continuous surface of coral disease prevalence (also referred to as disease clustering rates), but 

they will also be able to see which areas have statistically significant prevalence rates.     

I also recommend performing both the Gi
*
 and Ii local SA analyses on the weighted 

version of the case prevalence data (the weighted case data divided by the weighted population 

data, see Figure 6.18C2-3).  If time permits, I would also recommend performing these same 
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local SA analyses on the weighted case data and the weighted control data (see Figure 6.18A2-3 

and B2-3, respectively on page 159) so that additional information can be obtained about the 

spatial nature of both the diseased corals and the non-diseased corals.  Or, alternatively, perform 

the local SA analyses on the weighted case and weighted population data, so that the spatial 

nature of the diseased corals can be compared to that of the underlying coral population at risk of 

the given disease. 

However, if a faster and/or simpler method of identifying the locations of statistically 

significant disease clusters is needed, than I recommend performing a purely spatial analysis in 

SaTScan, using either the Bernouli probability model on non-weighted case (locations with 

disease present) and control (locations with disease absent) data, or the Poisson probability 

model on weighted case and population data.  SaTScan’s default cluster detection setting of “No 

Geographical Overlap” (NGO) will most likely suffice for most coral studies.  However, as was 

mentioned earlier in this chapter, I do not recommend relying exclusively on SaTScan for 

detecting & analyzing the locations of coral disease clusters unless it is absolutely necessary, as 

both DMAP’s dual KDEs and ArcMap’s local spatial autocorrelation (SA) analyses provide a far 

more detailed and accurate representation of the spatial nature of diseases. 

Last, if the given coral dataset contains weighted data with at least several hundred 

diseased locations, as well as information on other variables which could potentially impact the 

distribution of the given disease, then I also recommend spending some time trying to develop 

models that will not only explain the spatial distribution of a given disease outbreak, but also 

potentially be used to predict future outbreaks.  This can be done using either spatial regression 

methods or other types of ecologic analyses.  The results from such Tier 3 methods have the 

potential to provide the most meaningful insight into current and future coral disease outbreaks.  

However, these methods are also highly complex, requiring not only a large amount of data, but 
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also a great deal of time to develop a well specified model through essentially countless rounds 

of trial and error trying to see which combinations of variables best explain the given disease 

distribution.   

Table 7.4 Provides a summary of all of the different types of spatial analysis I 

recommend based on the types of coral health data available.  In order to show how the correct 

use and application of geospatial techniques have the ability to greatly enhance our 

understanding of coral health.  The following chapter applies some of the above recommended 

analytical methods to data from an actual coral disease outbreak.       
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Table 7.4    Summary of the Recommended Types of Spatial Analyses based on the Types of Coral Health Data Available.   

Geospatial Coral Epizootiology Tiers & ESDA Types 
Case                

(diseased) 
Control    

(non-diseased) 
Population 

(case + control) 
Case & 

Control 

Case & 

Population 

Temporal 

Data 

Other 

Attributes 

(1)  Disease Mapping & Visualization 
       

  •  Point-based maps (using circular, dot-shaped symbols)1 nw  nw  nw  nw  nw — — 

  •  Polygon-based maps (using Thiessen Polygons based on point locations)1 w w w nw & w w  
(prevalence map) 

— — 

(2)   Detection & Analysis of Disease Clusters        

(2A) General Disease Clustering (global statistic with no spatial output)        

 o Point Pattern Analysis (PPA) Distance Statistics     

        •  Ripley’s K 1 

 

nw & w 

 

nw & w 

 

nw & w 

 

— 

 

— 

 

— 

 

— 

(2B) Specific Disease Clustering (local statistics with spatial output)        

 o Spatial Kernel Density Estimates (KDE)        

 •  Single Adaptive Distance KDEs 2 nw & w nw & w nw & w — — — — 

 •  Dual Fixed Distance KDEs with Monte Carlo simulations3 — — — — nw & w — — 

 o Spatial Scan Statistic4        

 •  Bernoulli Model & default criteria for reporting secondary clusters — — — nw — — — 

 •  Poisson Model & default criteria for reporting secondary clusters — — — — w — — 

 o Local Spatial Autocorrelation (SA) Analyses1        

 •  Getis-Ord Local G (  
 ) w w w — w  

(prevalence map) 
— — 

 •  Local Moran’s I (Ii)  w w w — w  
(prevalence map) 

— — 

(3)  Disease Modeling, Prediction, & Ecological Analysis        

 o Space-Time Scan Statistic & associated probability models4 — — — nw or w nw or w nw or w — 

 o Temporal Scan Statistic & associated probability models4 — — — nw or w nw or w nw or w — 

 o Spatial Regression1 

•  Ordinary Least Squares (OLS) Regression,  in conjunction with                                                                                               

•  Geographically Weighted Regression (GWR) 

 

w 

w 

 

w 

w 

 

w 

w 

 

w 

w 

 

w 

w 

 

w 

w 

 

w 

w 

nw = non-weighted data (presence/absence by location)           

w   = weighted data (locations weighted by the # of individuals present at that location) 

Superscript numbers indicate which software to perform the analysis in:                              
1 = ArcMap      2 = CrimeStat      3 = DMAP     4 = SaTScan    
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Chapter 8. Evaluating Patterns of a White-Band Disease (WBD) 

Outbreak in Acropora palmata Using Spatial Analysis: 

A Comparison of Transect and Colony Clustering
1
 

“Spatial pattern analysis can document the scale of the 

disease processes and allow the testing of hypotheses about 

mechanisms of transmission” – Jolles et al. (2002) 

8.1 Introduction 

Over the past three decades, the incidence of coral disease has increased from sparse, 

localized sightings, to an apparent panzootic, as disease sightings have become commonplace 

among the world’s reef systems.  Since the first documented cases of coral disease in the late 

1960s and early 1970s (Squires 1965; Antonius 1973,1981; Gladfelter 1982), scientists have 

been working to identify causes of these diseases (Harvell et al. 2007; Rosenberg et al. 2007a); 

however, progress has been slowed by the complexity of coral ecosystems and anthropogenic 

influences on these systems (Harvell et al. 2002; Kinlan and Gaines 2003; McCallum et al. 2003; 

Harvell et al. 2004; Sutherland et al. 2004; Ainsworth et al. 2007b; Harvell et al. 2007; 

Rosenberg et al. 2007a; Bourne et al. 2009; Johnson et al. 2010; Williams et al. 2010).  Given the 

corresponding increase in human population pressure during this time period, it has been 

suggested that anthropogenic related stressors are contributing to, if not directly causing, coral 

disease outbreaks (Daszak et al. 2000,2001; Western 2001; Harvell 2004; Hoegh-Guldberg 2004; 

Sutherland et al. 2004; Aronson et al. 2005; Harvell et al. 2007; Lesser 2007; Baskett et al. 

2010).  While correlations between anthropogenic stressors and disease frequencies have been 

seen for quite some time (Green and Bruckner 2000; Daszak et al. 2001; Bruno et al. 2003; 

Gardner et al. 2003; Buddemeier et al. 2004; Johnson et al. 2010), it was only recently that direct 

                                                 
1 
This chapter has been reprinted permission from PLoS ONE (see Appendix D) with slight modifications.  For the  

original publication please see  Lentz JA, Blackburn JK, Curtis AJ (2011) Evaluating Patterns of a White-Band 

Disease (WBD) Outbreak in Acropora palmata Using Spatial Analysis: A Comparison of Transect and Colony 

Clustering. PLoS one 6:e21830 
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experimental evidence was able to actually show how anthropogenic stress factors (such as 

climate change, water pollution, and overfishing) were directly contributing to coral disease 

(Bruno et al. 2003,2007; Rosenberg et al. 2007a; Ainsworth and Hoegh-Guldberg 2009).      

While coral diseases are occurring globally, their incidence appears to be the most severe 

in the Caribbean (Porter and Meier 1992; Grigg 1994; Hubbard et al. 1994; Hughes 1994; 

Jackson 1997,2001; Cooney et al. 2002; Bruno et al. 2003; Sutherland et al. 2004; Aronson and 

Precht 2006; Ainsworth et al. 2007b; Carpenter et al. 2008; Bourne et al. 2009; Miller et al. 

2009).   Over the past few decades reports show that disease is responsible for a roughly 80% 

loss in Caribbean coral cover (Gardner et al. 2003; Nowak 2004; Wapnick et al. 2004).  Within 

the Caribbean, the Acropora coral genus appears to have been the hardest hit by disease, with A. 

palmata showing  a 90-95% decline (Aronson and Precht 2001; Precht et al. 2002; Vollmer and 

Kline 2008; Bourne et al. 2009) and A. cervicornis populations collapsing across the region 

(Harvell et al. 2001; Bythell et al. 2002; Precht et al. 2002; Wapnick et al. 2004), causing them to 

be the first corals in history to be listed as “threatened” under the United States Endangered 

Species Act .    

In 1977, shortly after the first documented coral disease, Black-Band Disease (BBD) 

(Antonius 1973,1981), a second “band” disease was also discovered in the Caribbean (Gladfelter 

1982; Aronson and Precht 2001).  This new White-Band Disease (WBD) has since been found to 

occur nearly worldwide in coral-supporting latitudes, ranging from the western Atlantic to the 

Red Sea, South Pacific, and Arabian Sea (Green and Bruckner 2000; Bythell et al. 2002).  

However, to date WBD has only been found to occur in the genus Acropora (Green and 

Bruckner 2000).  Despite the well-known phenomenon of WBD, far less is known about its 

etiology, such as specific pathogen or pathogenic communities (e.g. BBD microbial 

communities), transmission dynamics or routes of infection (Casas et al. 2004; Sutherland et al. 



 

191 

2004; Aronson et al. 2005; Williams and Miller 2005; Pantos and Bythell 2006; Zvuloni et al. 

2009).   

WBD is visually identified by a white band of tissue separating the living tissue from the 

dead tissue (Gladfelter 1982).  The specifics of this disease’s appearance are important to note 

because all too often signs of predation and bleaching are mistaken for WBD (Ginsburg 2000).   

As the disease band moves, coral tissue is found peeling or sloughing off where the white band 

is, leaving behind exposed white skeleton (Gladfelter 1982; Richardson 1998; Williams and 

Miller 2005).  In most cases, the coral skeleton does not remain bare for long, as the void is 

replaced by rapidly colonizing filamentous algae (Richardson 1998).  This, combined with its 

rapid rate of spread, as much as 2.06cm
2
/day, enables WBD to be the only known coral disease 

able to drastically change the structure and composition of reefs (Precht et al. 2002). 

While BBD has been confirmed to be associated with a community of bacteria (Cooney 

et al. 2002), this has not been confirmed for WBD (Aronson and Precht 2001; Richardson et al. 

2001; Bythell et al. 2002) or Yellow-Band Syndrome (YBS; Foley et al. 2005). However, it is 

often presumed that WBD is caused by a bacterial infection (Antonius 1981; Gladfelter 1982; 

Peters et al. 1983; Aronson and Precht 2001; Mayor et al. 2006).  To date no pathogen has been 

isolated in pure culture, nor causation proven (Casas et al. 2004; Pantos and Bythell 2006; 

Vollmer and Kline 2008).  However, the repeated findings of distinct differences between the 

bacterial communities present in healthy versus diseased tissue has lead recent studies to suggest 

that bacteria are more than just opportunistic invaders but rather appear to be associated with the 

disease – if not directly responsible for it (Casas et al. 2004; Pantos and Bythell 2006; Vollmer 

and Kline 2008).    Some studies have proposed that WBD may not be pathogen-induced, but 

rather a biochemical response to some type of coral trauma, in essence a “shut-down-reaction” 

(Antonius 1981; Richardson 1998).  Studies show that the frequency and severity of WBD 
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outbreaks over the past 30 years are unprecedented on a paleontological scale, leading many to 

speculate that anthropogenic stressors are directly associated with the disease, although to date 

no direct evidence of this reported (Richardson 1998; Aronson and Precht 2001; Precht et al. 

2002; Gardner et al. 2003).   The stressors that have been implicated include both regional 

stressors which are caused by the increasing human population levels coupled with 

anthropogenically driven climate change, as well as local stressors (such as over fishing, 

sedimentation, habitat destruction, etc.).  However, proving that WBD is linked to any of these 

stressors is quite difficult without a known pathogen or etiologic agent, if one even exists.  

Further, if WBD is not pathogen induced, but rather the manifestation of the declining health of 

corals due to increased stress, then theoretically a diseased state could be brought upon by 

increases in one stressor or small to moderate increases in multiple stressors; in which case the 

stressors involved would likely vary from case to case.       

 While there is debate over the causes of WBD, as well as the extent and severity of 

disease-related mortality in Acropora, studies increasingly are showing that virtually all areas of 

the Caribbean are at risk of degradation (Precht et al. 2002; Gardner et al. 2003).  By 1982, 

Tague Bay (located just north of St. Croix, see Figure 8.1), where Gladfelter first identified 

WBD in 1977, had lost about 50% of its Acropora population (both the shallow occurring A. 

palmata and the deeper occurring A. cevicornis).  Within five years as much as 95% of the 

original Acropora population had died (Precht et al. 2002; Williams and Miller 2005).  The 

decline in Acropora populations is of particular importance because the genus is known for 

developing the reef framework (Shinn 1963; Zubillaga et al. 2008), as well as for providing 

habitat critical to the support of diverse reef fish populations (Lirman 1999) and other organisms 

that contribute to the productivity and overall health of the reef (Aronson and Precht 1997,2001; 

Jackson et al. 2001; Precht et al. 2002).   
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Figure 8.1 The study area.  Buck Island (BUIS) Reef National Monument, located just north 

of the island of St. Croix, US Virgin Islands (USVI).  Mayor et al.’s (2006) study area is 

delineated by the light grey area surrounding BUIS, consisting primarily of hard-bottom 

substrate less than 10m deep.  The extent of the grid surface used in the DMAP analysis is 

depicted by the dashed rectangle surrounding the study area. 

 

Over the last decade there has been increased recognition that geography plays an 

important role in coral diseases, marked in large part by the growing number of studies that 

employ geographic information systems (GIS) technologies and spatial statistics (Jolles et al. 

2002; Foley et al. 2005; Zvuloni et al. 2009); though to date, relatively few studies have directly 

analyzed the spatial patterns of diseases in reef communities.  Jolles et al. (2002) provides a key 

approach to the application of spatial statistics to explore spatial patterns of aspergillosis (a 

diseased caused by the fungus Aspergillus syndowii) in sea fans to test hypotheses of 

transmission and infection.   

Jolles et al. (2002) employed the Ripley’s K statistic, a global measure of spatial 

autocorrelation, to describe the spatial patterns of disease in sea fans of various sizes and from 

multiple sites with regard to the underlying sea fan population.  Specifically, they were interested 

in determining whether the spatial distribution of diseased sea fans was clustered, dispersed, or 
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random at each of the different distance scales tested, and how this diseased distribution 

compared to the spatial distribution of the underlying sea fan population.  By doing this they 

were able to not only quantify the geographic scale of the disease outbreak, but they were also 

able to test hypotheses regarding the secondary transmission of A. syndowii.  Their results 

showed that where disease prevalence was low, the disease appeared to have a random spatial 

distribution; which might indicate that the disease was being transmitted by terrestrial sources 

(such as soil runoff or airborne dust).  Conversely, they found that where disease prevalence was 

high there would be a statistically significant spatial aggregation (cluster) of aspergillosis; which 

would be more indicative of secondary transmission of the disease through either direct contact 

(sea fan to sea fan, or through a vector such as fish or snails) or through the water column.    

More recently, a similar approach was used to study the spatio-temporal patterns of BBD 

in order to assess possible disease transmission mechanisms (Zvuloni et al. 2009).  Specifically, 

they used the Ripley’s K statistic in both their spatial and spatio-temporal analyses to infer 

transmission patterns and to calculate epidemiologic parameters, such as the basic reproductive 

number (R0).  Their study found that BBD was spatially clustered (though not to a statistically 

significant extent) and that as the peak disease season was approached the size of these clusters 

would increase.  The temporal nature of their study enabled them to track disease spread 

throughout their study area.  Over the course of their two year study, they found that newly 

infected corals were often in close proximity to (or even in direct contact with) already infected 

corals, indicating that BBD was likely being spread through the water column and by direct 

contact with infected individuals.  Ultimately, they reached a similar conclusion as Jolles et al. 

(2002), stating that the presence of disease clusters were the “hallmark signature for the presence 

of localized transmission dynamics” (page 9, Zvuloni et al. 2009).   
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The GIS and spatial analytical methods employed by Jolles et al. (2002) and Zvuloni et 

al. (2009) facilitated a better understanding of the etiologies of their respective diseases by 

examining the spatial disease distribution, and testing hypotheses regarding the mode of 

transmission and infection.  However, it is important to note that both of these studies were based 

on diseases in which the infectious agent had already been identified.  Unfortunately, this is not 

the case for most coral diseases.   

A novel study by Foley et al. (2005) used GIS and spatial analysis (specifically the Ripley 

K function) to study the spatial distribution of YBS in an effort to infer causation from spatial 

patterns of disease.  Their results revealed that while the underlying population of susceptible 

corals (Montastrea annularis) appeared to be strongly spatially clustered, the distribution of M. 

annularis with YBS was less clustered and more dispersed (Foley et al. 2005).  Those results 

were consistent with hypothesized etiologies in which near shore pathogens or toxins were either 

directly introducing YBS or indirectly leading to YBS by increasing host susceptibility (Foley et 

al. 2005).  They postulated that the lack of disease clustering in a population in which the 

individuals show a strong spatial aggregation, may indicate that the close proximity of the corals 

may decrease the risk of infection by creating physical barriers which would inhibit the 

transmission of the disease agent or toxins (Foley et al. 2005).   

Following the rationale of Foley et al. (2005), this paper employs spatial statistics in an 

effort to characterize the patterns of WBD in A. palmata colonies from a 2004 outbreak in the 

reef system around Buck Island National Monument, St. Croix, US Virgin Islands (USVI, see 

Figure 8.1) using data from Mayor et al. (2006).  In an effort to characterize the prevalence of 

WBD and the extent of elkhorn coral damage from disease and hurricane damage, Mayor et al. 

(2006) initiated an intensive sampling effort to map and count colonies of A. palmata. That 

initial study documented a prevalence of ~3 % WBD across colonies and suggested that it may 
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still pose a threat to the Buck Island reef community.  This study employs the Ripley’s K 

statistic, and a spatial filtering method to identify local spatial clusters of disease and discusses 

those in the context of possible causative agents or reef trauma that may assist in the ultimate 

determination of WBD causation. 

8.2 Materials and Methods 

Spatial analyses were performed on data provided by the US National Park Service.  The 

dataset was originally compiled in a study examining the distribution and abundance of A. 

palmata, and the prevalence of WBD around Buck Island (BUIS) following a 2004 outbreak 

(Mayor et al. 2006).  In order to facilitate data collection, the original survey evaluated habitats 

favorable for A. palmata, limiting the survey region to hard-bottom areas less than 10m deep 

(depicted as the shaded region around BUIS in Figure 8.1).  A total of 617 locations were 

randomly selected for 25m by 10m transect surveys.  Of those transects, 375 contained A. 

palmata colonies.  Following the original case definition of Mayor et al. (2006), “Elkhorn 

colonies were considered infected with WBD if they had narrow white bands of exposed 

skeleton, circling completely around the coral branches, bordered on the upper side by live tissue 

and on the lower side by dead skeleton covered with algae" (page 240).  Of those 375 original 

transects 44 contained evidence of WBD. 

Spatial locations were recorded for each transect and not for each individual coral colony, 

although each transect location had a total number of colonies associated with it.  To test for 

potential differences in WBD prevalence estimates and spatial patterns between those two scales, 

two subsets of the spatial data were developed.  The first subset consisted of “transect-level” data 

of WBD presence or absence.  While, the second subset consisted of “colony-level” data in 

which each transect location was weighted by the number of A. palmata colonies (both with and 

without WBD) present at that location (see Figure 8.2).  
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 Spatial Autocorrelation Methods 8.2.1

The Ripley’s K statistic was employed in ArcGIS 9.3.1 to examine the extent of spatial 

dependence (the clustering or dispersion of corals) across several distances.  This statistic was 

calculated using the following linear transformation of the K-function:  
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where n is the total number of transect locations, k is used to weight the transect location (i,j) by 

the number of A. palmata colonies within the given transect, A is the study area, and d is the 

distance over which the spatial autocorrelation is being tested.  The distance, d, was calculated 

from 0 to 2,500m in 50m bins for corals with WBD present, corals without WBD present, and for 

the underlying coral population for both the transect-level and colony-level subsets.  Note no 

weight (k) was included in the transect-level analyses.  A total of six analyses were conducted.  

For each, 99 permutations were run resulting in a 99% (or 0.01) confidence interval (CI) 

envelope for the Observed Ks.  The resultant Observed and Expected K values (L(d) and d, 

respectively) were plotted against the tested distances for each of the 6 analyses.  The Expected 

K values represent the null distribution of complete spatial randomness (CSR), also known as the 

“Poisson distribution.”  The plotted Expected K values act as the benchmark used to test the 

spatial distribution of the Observed Ks against the null distribution of CSR.  The Observed Ks 

that fall along this line are considered to have a spatially random distribution, while anything that 

lies above this line is considered to have a more aggregated spatial distribution and anything that 

falls below this line is considered to have a more dispersed spatial distribution.  The CI envelope 

is used to determine whether or not the observed spatial pattern is statistically significant (p = 

0.01), with no significance associated with the spatial distributions of Observed Ks within this 
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envelope.  The observed distribution is considered to have significant clustering when the values 

lie above the upper CI; conversely, values that lie below the lower CI are considered to be 

significantly dispersed. 

 The difference function (D) was used to examine the spatial distribution of WBD with 

respect to underlying environmental heterogeneity caused by the presence of the underlying coral 

population.  To do this the Normalized K values from the underlying population were subtracted 

from those of the WBD corals so that I would be able to assess to what extent the spatial 

distributions of WBD depicted by the homogeneous analyses (Appendix C) were caused by the 

disease itself, rather than the natural background variation in the A. palmata population (Figure 

8.3).  The resulting Disease-Population difference function was quite similar to the design of the 

Ripley’s K function used by Jolles et al. (2002) in which they set their null distribution equal to 

that of the underlying population of susceptible corals and then plotted K-Knull  against distance. 

 Spatial Filtering Methods 8.2.2

The Disease Mapping and Analysis Program (DMAP, available for download at 

http://www.uiowa.edu/~gishlth/DMAP/) was used to employ a spatial filter to smooth prevalence 

estimates and then identify statistically significant increased prevalence using Monte Carlo 

simulations (Rushton and Lolonis 1996; Rushton et al. 1996; Curtis and Leitner 2006).  These 

prevalence estimates are spatially explicit and represent clusters on the mapped surface.  DMAP 

was used to construct WBD prevalence surfaces for both data subsets.   

DMAP analyses require a rectangular gridded surface that encompassed the entire study 

area.  The grid was defined in the northwest by lat/long coordinates of 17.809ºN, -64.648ºW, and 

in the south-east by 17.775ºS, -64.579ºE, respectively, with a 50m
2
 grid cell size (see dashed 

rectangle in Figure 8.1).  Grid cell size was chosen based on the scale of the analysis and size of 

the study area.  The size of the grid cell is important because it defines the scale of identified 

http://www.uiowa.edu/~gishlth/DMAP/
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cluster patterns, if the grid cells are too small the interpolation will become jagged, while an 

excessively large grid cell will lack resolution in delineating clusters.   

All point level data are aggregated to a filter centered on each grid intersection point.  In 

DMAP this filter is a circle with a user-defined radius. This filter is then applied to the numerator 

(transects containing A. palmata with WBD) and denominator (all transects containing A. 

palmata) data to calculate prevalence at each grid intersection.  It is important to note that these 

filters must be large enough to cover multiple-grid intersections, allowing for points to be 

included in multiple prevalence calculations, and thus smoothing the estimated surface which 

eliminates hard (and often artificially defined) aggregation breaks.  Once these local prevalence 

estimates have been calculated, a Monte Carlo simulation is employed to identify any areas with 

repeated prevalence estimates higher than expected from the simulations.  The Monte Carlo 

simulation is based on the actual locations of transects containing A. palmata colonies; with a 

probability for each “healthy” individual becoming diseased.  Probability was set as the 

prevalence of each of the transect and colony-level analyses, respectively.  A Monte Carlo 

simulation re-creates this disease surface “n” times, creating a simulated distribution against 

which the actual disease surface is compared.  If, for example, the prevalence in one filter is 

actually higher in 990 out of the 1,000 simulation runs, one can be 99% confident (equivalent to 

a p-value of 0.01) that the revealed prevalence, or hotspot, did not occur by chance alone.  These 

hotspots are considered spatial clusters of WBD within the BUIS reef system. 

As the method of WBD transmission is not currently known, nor the distance to which 

the pathogen or vector (if any) can viably travel, the spatial parameters used during the spatial 

analysis could not be based on the epidemiology of WBD.  For this reason the optimized 

bandwidth (hopt) statistic was used to estimate the size of the filter radius size based on the spatial 
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structure of the dataset.  Following Fotheringham et al. (2000) the optimized bandwidth was 

calculated as: 

     [ 
 

  
 ]

 
 
  

where n = the sample size of transect locations (375) and σ = the standard distance or a measure 

of dispersion around the spatial mean of the transect locations.  Standard distance was calculated 

in ArcGIS 9.3.1 using the spatial statistics toolbox and a standard deviation of 1 (1688.2m).  The 

resulting optimized bandwidth estimation (hopt = 342.55m) was employed for DMAP analyses on 

both transect and colony-level data.  Resultant hotspots were mapped in ArcGIS 9.3.1 by 

rasterizing the DMAP output of the WBD prevalence estimates and overlaying probability value 

contours outlining disease clusters in which the  of WBD prevalence estimates were statistically 

significant (p = 0.05). 

8.3 Results 

Given that WBD was found at 44 of the 375 transects surveyed, the estimated prevalence 

of WBD based on the transect-level data was      ̅%, suggesting that more than 10% of the 

transects reported diseased A. palmata.  However, of the 2,492 colonies surveyed only 69 

appeared to have WBD present, which results in a WBD prevalence of 2.77% based on the 

colony-level data.   The mean number of A. palmata colonies with WBD absent per transect was 

6.48 (min 1, max 40, 5.87 SD), which was very close to that of the overall mean, 6.65 (min 1, 

max 40, 5.99 SD); while, the mean number of A. palmata colonies with WBD present was much 

lower, 1.57 (min 1, max 6, 1.16 SD).  The graph in Figure 8.2A illustrates the distribution of the 

number colonies with and without WBD present among the surveyed transects. 

As transect- and colony-level analyses were performed on same coral dataset, it became 

clear how interpretations of the data would change based on the level of reporting (Figure 8.2B).   
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Figure 8.2 This figure visually depicts the differences between the transect- and colony-level 

versions of the dataset.  (A) Colony densities (the number of colonies per transect) are plotted 

against the total number of transects with a given colony density, resulting in the cumulative 

frequency of the colony densities with and without white-band disease (WBD) present.  (B) 

Circular symbols are used to indicate the locations of transects with and without WBD present, 

from the transect-level version of the dataset (top row).  The colony-level dataset is depicted 

using a graduated symbol map in which the size and color of the symbols used to indicate the 

locations of each transect are scaled according to the number of colonies within that transect to 

depicts the colony-level dataset (bottom row). 
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The transect-level data represent the presence or absence of WBD for each transect, which was 

visually depicted in the top row of Figure 8.2B by circles indicating the locations of the 44 

transects in which WBD was present (top left) and the 331 transects where no WBD was seen 

(top right).  While, the second version of our dataset, consisted of the same geographic 

information (the transect locations); it included additional information about the disease-state of 

the individual colonies within each transect.  The colony-level analysis of the dataset was 

visually depicted by circular-symbols in which the center of each circle indicated the transect 

location (Figure 8.2B), while the size and shade of the symbol were scaled to represent the 

number of colonies within each transect that either had WBD present (bottom left) or WBD 

absent (bottom right).   

The most striking differences between the resultant spatial distributions of the transect- 

and colony-level versions of the dataset became apparent when the difference function (D) was 

used to examine the spatial patterning of WBD among the A. palmata coral populations (Figure 

8.3).  The presence/absence analysis of WBD at the transect-level (Figure 8.3A) revealed spatial 

aggregation in all transects containing WBD.  No significant difference was detected between the 

aggregated distribution of transects with WBD present and the aggregated distribution of the 375 

total transects, based on analysis done using distance thresholds between 1.25km and 1.50km; 

while the aggregation of WBD was found to be significantly more clustered at distance scales    

< 1.25km and significantly less clustered at distances > 1.50km than the clustered distribution of 

the underlying population.  The weighted K function analysis of prevalence WBD at the colony-

level (Figure 8.3B) revealed that colonies with WBD present had fairly random spatial 

distributions at distances < 2.1km, becoming more dispersed at distances >2.1km.  However, 

when compared to the underlying population densities, the spatial distribution of the WBD 

colonies was significantly more dispersed than the clustered distribution of susceptible colonies.     
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Figure 8.3 The results of the Ripley’s K spatial autocorrelation analysis.  Normalized 

Ripley’s K plots were used to assess the spatial distribution of white-band disease (WBD) among 

Acropora palmata over a distance of 2.5m.  Transect-level and colony-level versions of the K 

function were performed in order to compare the spatial distributions of WBD based on data 

analyzed at the (A) transect- and (B) colony-levels (respectively).  In order to insure that the 

observed spatial distribution was reflecting the spatial nature of WBD, and not the spatial 

patterning of the underlying population, the transect and colony-level Observed K values for the 

underlying population were subtracted from the Observed Ks of WBD at the transect- and 

colony-levels, respectively.  The resulting K values for WBD were then plotted against distance.  

The spatial nature of WBD was then assessed by comparing these K values for WBD (thick line) 

to a spatially random (Poisson) distribution (dashed line at y = 0), in which WBD values above 

the Poisson distribution indicates WBD was clustered within the underlying population, while 

values below this line indicated WBD was more dispersed than the underlying population.  The 

99% confidence intervals (thin lines) generated from the Observed K values for the population 

were used to determine the statistical significance of distribution of WBD within the underlying 

population of susceptible corals.    
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Analyses using the DMAP spatial filter revealed significant spatial clustering at both 

spatial scales tested; however, it is interesting to note some differences in the distribution and 

size of clusters in each of the two experiments.  A red line was used to show the exterior 

boundaries of areas in which the WBD prevalence estimates were predicted to be statistically 

significant (p = 0.05) based on 1000 Monte Carlo simulations (Figure 8.4).    

 

 

Figure 8.4 The results of the Disease Mapping and Analysis Program (DMAP) spatial 

filtering analysis.  Comparing the difference between analyzing the coral dataset at the transect 

(A) verses colony-level (B) using DMAP.  The following spatial parameters were used for both 

analyses: a 50m
2
 grid cell resolution; and a 342.55m filter radius, calculated using the Optimized 

Bandwidth (hopt) estimation method.  The prevalence of white-band disease (WBD) clustering 

are shown in green, with darker shades indicating increased prevalence.  Areas with statistically 

significant clustering rates (p  0.05), based on 1000 Monte Carlo simulations, are outlined in 

red.  The numbers placed beside each significant clustering were used solely for identification 

purposes, and have no empirical value. 

 

 Overall, the transect-level analysis revealed relatively high WBD prevalence throughout 

the study area (indicated by the dark shades of green in Figure 8.4A), with approximately five 

areas with statistically significant WBD clustering.  By comparing the spatial output to Mayor et 

al.’s (2006) dataset, we found that 36.4% of the transects with WBD present (containing 37.7% 

of the diseased colonies) were located within 100m of these five areas of significant disease 

clustering, with only 13.6% of the  WBD transects (containing less than 12% of the total disease 

colonies) occurring inside one of the areas with significant WBD clustering. 
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 The WBD clustering patterns revealed by the DMAP analysis of the colony-level dataset 

revealed dramatically different results.  The prevalence of WBD was relatively low across the 

study area, with eight relatively large statistically significant areas of WBD clustering distributed 

fairly evenly throughout the study area (Figure 8.4B).  When the areas of statistically significant 

WBD clustering were compared to our underlying dataset, we found that more than half of the 

transects and colonies with WBD (70.5% and 79.7%, respectively) were within 100m of one of 

the 8 significant clustering areas, of which 34.1% of the transects and 50.7% of the colonies were 

located inside one of the 8 areas.   

The total area with significant WBD clustering based on the DMAP Monte Carlo analysis 

of the colony-level dataset was almost three times larger than the total clustering area based on 

DMAP analysis of the transect-level data (20.50km
2
 and 7.35km

2
, respectively), even though the 

WBD prevalence estimated at the transect level is more than four times higher than the 

prevalence estimated at the colony-level.  The mean transect depth inside the significant 

clustering areas for the transect-level and colony-level datasets was 7.55m and 6.90m, 

respectively, compared to a mean transect depth of 5.87m for all transects surveyed within the 

study area. 

8.4 Discussion 

Despite being one of the first documented coral diseases, there is still little information 

available on the causative agent or specific environmental stressors that promote White-Band 

Disease (WBD; Aronson and Precht 2001; Casas et al. 2004; Sutherland et al. 2004; Aronson et 

al. 2005; Williams and Miller 2005; Pantos and Bythell 2006).  As the search for causation 

continues, surveillance and proper documentation of the spatial patterns may inform etiology, 

and at the same time assist reef managers in allocating resources to tracking the disease.  
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These results show a clear difference between interpreting data at the transect verses 

colony-level (Figures 8.2 – 8.4).  The disease surface produced by the transect-level analysis 

suggests that this was a severe, widespread WBD outbreak (indicated by the high WBD 

prevalence estimates throughout the study area, see the dark green areas of Figure 8.4A).  

Assuming that the disease is contagious and spreads from an initial location, one could 

hypothesize that the primary cluster areas identified by the transect-level analysis may be the 

origin of the outbreak, with cases spreading via the dominant direction of tidal flow, currents, 

prevailing winds, etc.  This hypothesis could be tested with time-specific data on WBD 

occurrence or modeled with simulated data to determine if such a flow is feasible (Zvuloni et al. 

2009).  This would allow the development of a working spatial model for contagious spread 

based on reef morphology, water flow, and environmental conditions around the reef. However, 

testing this hypothesis was beyond the scope of this study, as Mayor et al.’s (2006) dataset we 

did not have a temporal component.  In contrast, the disease surface produced by the colony-

level analysis might indicate that a low-grade, broadly distributed WBD outbreak that might be 

the result of a ubiquitous stressor.  In this way, the spatial resolution from each analysis can be 

used in a Modifiable Area Unit Problem (MAUP) framework to develop field studies and models 

designed to test these hypotheses to inform the etiology and subsequent pathogen surveys 

(Openshaw and Taylor 1979; Openshaw 1984).  

The use of the spatial filtering approach here allowed me to evaluate the distribution of 

local clusters across the reef and identify specific hotspots of WBD for the 2004 data set. In this 

way, I can evaluate specific hydrological conditions, reef morphology, or environmental 

contamination (or microbial communities) that might influence specific regions of the reef that 

might now be acting globally across reef.  While the use of Ripley’s K by the seminal works 

Jolles et al. (2002) and Foley et al. (2005) provided insights in to the spatial pattern and scale of 
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the apsergillosis in sea fans and YBS in corals, respectively, the precise location of clusters must 

be inferred in those studies based on sampling strategy and reef location.  The Ripley’s K statistic 

is a global measure designed to determine the spatial scale at which clustering is present on the 

landscape, but it does not identify where on the landscape the clustering is occurring (Gatrell et 

al. 1996; Lancaster and Downes 2004; Marcon and Puech 2009; Bayard and Elphick 2010).   

As did Jolles et al. (2002), Foley et al. (2005), and Zvuloni et al. (2009), this study 

directly accounted for the distribution of both infected and unaffected corals, allowing me to test 

and ultimately reject the hypothesis that clusters in WBD were simply reflections of the 

underlying coral density.  The prevalence of WBD was much lower than the prevalence of 

aspergillosis in Jolles et al. (2002) study in which the mean prevalence among their 3 sites was 

47.97%, whereas, the prevalence of WBD was only 2.77% and 11.73% based on the colony- and 

transect-level datasets respectively.  Jolles et al. (2002) found significant clustering in areas of 

high disease prevalence.  The Ripley’s K results of our transect-level data (Figure 8.3A) support 

this, given that the WBD prevalence estimated at the transect-level was much higher than that of 

the colony-level, and there was the high degree of significant WBD clustering (compared to the 

aggregated distribution of the underlying transects) based on the transect-level data, whereas no 

significant WBD clustering was detected using the colony-level Ripley’s K analysis of the 

colony-level data (Figure 8.3B).  However, this does not appear to be the case when the results 

of the DMAP analyses were examined, as the colony-level data had a total significant clustering 

area almost three times larger than that of the transect-level data, but the WBD prevalence 

estimated at the transect level was more than four times greater than colony prevalence.  

The low prevalence of WBD among A. palmata colonies, combined with the fairly 

random spatial distribution of WBD colonies shown in Figure 8.3B, might indicate that the 

disease is caused by either air and/or water-born direct transmission of the causative disease 
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agent from a terrestrial point of origin (Jolles et al. 2002).  The rational being that corals “of 

equal size have equal chances of being hit by infectious material suspended in the water column” 

(page 2374, Jolles et al. 2002).  The assumptions of this hypothesized mode of disease 

transmission were supported  given that the overall distance between possible terrestrial-based 

contaminant sources and the locations of the A. palmata colonies was quite large compared to the 

significantly clustered spatial distribution among the susceptible colonies (Jolles et al. 2002).  In 

addition, the dispersed WBD distributions might also indicate that the clustered coral population 

may offer protection from disease by providing physical barriers to the disease agents or toxins 

(Foley et al. 2005). 

The presence of statistically significant areas of WBD clustering, as indicated by the 

DMAP analyses, does not necessarily conflict with the assumptions of this hypothesis, as the 

type of cluster analysis used to test this theory by the previously mentioned studies (i.e. the 

Ripley’s K function) was based on a global statistic designed to quantify changes in spatial 

patterns at various distances.  Instead, given the low WBD prevalence estimates and broad 

geographic distribution of the areas with statistically significant disease clusters identified by the 

DMAP analysis, the colony-level data could be used to support this hypothesis, suggesting that 

WBD might be the result of a ubiquitous stressor.  In such a case, the areas of significant disease 

clustering, might indicate the presence of locally aggregated stress factors which might make the 

surrounding corals more vulnerable to infection (suggested by Jolles et al. 2002).  This 

hypothesis could be tested by looking for correlations between areas with increased 

environmental risk factors and the areas of significant WBD clustering predicted by DMAP (or 

other types of spatial filtering analysis) in comparison to areas absent of disease in the study 

area.  Conversely, WBD clusters may indicate the presence of diverse microbial organisms with 

different virulence levels, though the causative agent(s) and mechanism are not yet described.   
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Disease clustering could also be the result of genetic clustering of corals that are more 

susceptible to the disease.  This possibility was ruled out by both Jolles et al. (2002) and Zvuloni 

et al. (2009) as genetic clustering was unlikely due to the reproductive nature of the corals in 

their studies (sea fans and massive corals respectively).  A. palmata can reproduce both sexually 

via broadcast spawning (Szmant 1986; Baums et al. 2006) – which would make genetic 

clustering unlikely (Jolles et al. 2002; Zvuloni et al. 2009), and asexually through fragmentation 

(Highsmith 1982; Lirman 2000).  Historically, Acropora relied on seasonal sexual reproduction 

to increase their population size and distribution, while using asexual fragmentation as a survival 

mechanism to rebound from storms or other physical damage (Highsmith 1982).  Ultimately, one 

of the traits that had made A. palmata so resilient in the past may be a contributing factor to their 

decline, as the decrease in genetic diversity that tends to occur in populations dominated by 

fragmentation may cause the corals to be more susceptible to emergent epizootics (Bak 1983; 

Bruckner 2002a; Williams et al. 2008).  In addition, when fragmentation occurs the corals have 

to devote their energy towards recovery instead of reproduction (Lirman 2000; Baums et al. 

2006).  The same appears to be true of stress in general for Acropora, as populations recovering 

from various high stress conditions show decreased (or the complete cessation of) sexual 

reproductive processes, as well as decreased survival of their asexual fragments (Williams et al. 

2008).  How long it takes for A. palmata to recover enough from fragmentation or other stresses 

to start spawning appears to vary by location (Baums et al. 2006; Williams et al. 2008).  

Lirman’s (2000) study showed that “3 years after Hurricane Andrew, gametes were only present 

in large A. palmata colonies that had not experienced direct fragmentation during the storm.  

Neither those colonies that were damaged by the hurricane nor any of the hurricane-generated 

fragments had produced gametes at this time” (page 53).  Additionally it appears that “colony 

fecundity is dependent on a coral’s size and condition” (page 124, Grober-Dunsmore et al. 
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2006), which is a problem because stressors appear to disproportionately affect the larger 

colonies (Grober-Dunsmore et al. 2006).   

Overall the combined low disease prevalence, limited number of (large) clusters, and 

wide distribution of statistically significant WBD clusters suggests WBD may “persist as a 

ubiquitous, chronic stress,” as was suggested by Grober-Dunsmore et al. (2006) for the A. 

palmata in their study area (which surrounded the island of St. John, located just north of Buck 

Island in the USVI).    

At present, many investigations examining spatial data concentrate (and more 

importantly, collect) only on the variable of interest.  In the case of coral disease, this would be 

the location of the diseased coral.  However, without similarly collected population data, it is 

impossible to know if the pattern revealed by the analysis is a disease “hotspot,” or simply 

indicative of locations with higher densities of coral; i.e.,  ceteris paribus, the more coral there is, 

the more diseased corals are likely to be found.  However, a counter problem of weighting a 

transect by the number of colonies is – exactly where do colony boundaries occur?  It is possible 

to create an artificial hotspot by adding too many artificial boundaries.  For these reasons, studies 

examining coral diseases should be done at as fine a spatial resolution as possible, with accurate 

and precise spatial measurements.  This will have the added benefit of not only improving 

existing spatial investigations but opening the analysis to more sophisticated spatial inquiry.  

Future studies should also examine each of these significant WBD clustering areas at 

both the geographic and microbial scales.  In this way spatial regression models could be used to 

associate disease clusters with surrounding environmental factors, such as stressors (human 

population size, pollution, frequently visited tourist sites, etc.), and/or physical properties 

(surface currents, sea surface temperatures, wind direction, salinity, etc).  Analyses at the 

microbial scale could test for similarities and differences in the histology and bacterial 
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communities between corals from each of the significant diseased clusters; as well as compare 

corals within significant disease clustering areas to those in non-significant diseased areas.   

The analysis and mapping approach employed here can also be used to study the spatio-

temporal changes in coral health by comparing changes in the position, size, and local prevalence 

rates of clusters and significant areas of coral bleaching and other coral diseases.  Comparisons 

of the clustering of different types of diseases present in one location may also provide valuable 

insight into the continued decline in reef health worldwide.  These spatial insights should provide 

valuable insights to both coral disease researchers and marine resource managers with 

information on the most vulnerable areas of the reefs. 
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Chapter 9. Synthesis and Conclusions 

“Worldwide coral reef ecosystems have been transformed under the influence 

of direct and indirect effects of human activities (Bruno et al. 2007).  

Understanding the relationships between human activities and their ecological 

impacts and assessing the spatial distribution of these impacts are crucial steps 

in managing the use of coral reefs in a way that maximizes commercial and 

societal benefits while minimizing reef degradation.”  

– Selkoe et al. (2009) 

9.1 Summary 

Over the last few decades, recognition of the importance of geospatial information 

concerning health-related issues has increased substantially.  In the coral community, this shift 

has been marked by a seemingly exponential increase in the number of studies reporting the 

importance of spatial pattern analysis in determining both the cause and transmission dynamics 

of various coral diseases (Real and McElhany 1996; Foley et al. 2005; Crowder et al. 2006; 

Grober-Dunsmore et al. 2006; Ritchie 2006; Selig et al. 2006; Jones et al. 2008; Selkoe et al. 

2009; Sokolow 2009; Weil and Croquer 2009; Zvuloni et al. 2009; Eakin et al. 2010; Ruiz-

Moreno et al. 2010; Selig et al. 2010; Maina et al. 2011; Pittman and Brown 2011).   As part of 

this recognition, the recording of GPS coordinates has become standard protocol for many coral 

field studies (Ginsburg 2000; Jolles et al. 2002; Weil et al. 2002; Lang 2003; Willis et al. 2004; 

Foley et al. 2005; Grober-Dunsmore et al. 2006; Mayor et al. 2006; Zvuloni et al. 2009; 

ICRI/UNEP-WCMC 2010b; Pittman and Brown 2011).        

 Spatial Analysis of Coral Diseases 9.1.1

Despite this growing recognition of the importance of studying the spatial nature of both 

coral diseases and their environmental stressors, only a handful of studies have actually used 

spatial statistics to analyze their spatial data (Jolles et al. 2002; Foley et al. 2005; Zvuloni et al. 

2009).  Meanwhile, the remainder of the studies claiming to spatially analyze their coral disease 

data, either rely on visual examination of disease locations (Grober-Dunsmore et al. 2006; Mayor 
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et al. 2006; Selkoe et al. 2009), or use standard, linear statistics to analyze their spatial data 

(Selig et al. 2010; Maina et al. 2011).  There are several problems with using traditional 

statistical techniques on spatial data.  First, the very nature of these techniques treats the data as 

if all the points are occurring in the exact same location.    Second, many of these statistics are 

based on underlying assumptions that the data has a normal, homogeneous distribution (Maina et 

al. 2011); which is an inappropriate assumption considering that both corals (as well as most 

living creatures) and environmental stressors almost always have heterogeneous spatial 

distributions (Harley et al. 2006; Ruiz-Moreno et al. 2010; Selig et al. 2010). 

However, it should also be noted that the use of geospatial statistics should not be taken 

lightly, as different types of spatial analysis, as well as different parameter settings within each 

analysis, can produce noticeably different results.  Consequently, poor selection or improper use 

of a given technique could lead to inaccurate representations of the spatial distribution, resulting 

in false interpretations of the disease.  For this reason, a comprehensive review was done of all of 

the most common types of spatial analysis.  The performance, accuracy, and effectiveness of 

each type of analysis were assessed using an artificial dataset with known cluster locations.  The 

results of these analyses were then used to develop a geospatial analytical protocol to be used by 

scientists with little to no background in GIS or spatial analysis.   

Prior to this dissertation the only types of spatial analysis that had been used to study 

coral diseases involved the use of various types of global measures of spatial autocorrelation 

(Jolles et al. 2002; Foley et al. 2005; Zvuloni et al. 2009).  The global statistics used by the 

previous coral disease studies are designed to determine the following: (1) characterize the 

overall, region-wide trend of the data’s spatial distribution; (2) determine what spatial scales this 

distribution occurs at; and (3) estimate the statistical significance associated with the spatial 

distribution.  However, this type of global statistic does not identify the presence or locations of 
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any local variations in the spatial distribution of the data, and therefore provides no information 

on where possible disease clusters are occurring.  

The geospatial analytical protocols I developed (presented in Chapter 7), expand on these 

global measures and incorporate the use of local measures of geospatial analysis to detect and 

analyze the specific locations of coral disease clusters.  By applying these methods to data from a 

2004 White-Band Disease (WBD) outbreak, I was able to produce mapped representations of 

WBD prevalence and the locations of areas with statistically significant WBD prevalence rates. 

Additionally, by comparing transect-level (non-weighted) and colony-level (weighted) analyses, 

I found that higher resolution sampling resulted in more realistic disease estimates.  The results 

of this work, which were published earlier this year as a manuscript in PLoS ONE (see Lentz et 

al. 2011), are believed to be the first time geospatial analytical techniques have been used to 

visualize the spatial nature of a coral disease.   

Additionally, the types of spatial analysis reviewed in this dissertation, and in particular 

the specific analyses that I have recommended in Chapter 7, have the potential to provide a great 

deal of insight into coral epizootiology.  These methods can be used to study the spatio-temporal 

changes in coral health by comparing changes in the position, geographic distribution, and 

statistical significance associated with the local prevalence rates (i.e. disease clusters) for a given 

coral disease.  By performing the same Tier 2 analyses on multiple datasets of the same coral 

disease from different geographic locations and/or time periods, researchers would be able to 

determine whether the given disease tends to have predictable geospatial distribution patterns (a 

sort of spatial thumbprint), or whether the spatial characteristics associated with the disease 

appear to vary from outbreak to outbreak.   Tier 2 analyses could also be used to compare the 

location, size, severity, and significance of clusters associated with different coral diseases in a 

given location during the same period of time.  The locations of disease clusters, could also be 
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used to guide microbial field work, such as comparing samples taken from diseased and non-

diseased corals located within an area identified as having statistically significant prevalence 

rates to samples taken from the same types of corals located in an area with very low prevalence 

rates.  Additionally, identifying where disease prevalence is the highest, would give marine 

resource managers the ability to try and protect these areas from any additional stress (such as 

closing that area of the reef off to tourism).   

 Availability of Spatial Coral Disease Data 9.1.2

The following websites have been developed over the last decade to collect global coral 

disease data: the Atlantic and Gulf Rapid Reef Assessment (AGRRA, http://www.agrra.org); the 

Global Coral Disease Database (GCDD; http://coraldisease.org, and formerly at 

http://development.unep-wcmc.org/GIS/coraldis/index.cfm); and Reefbase (http://reefbase.org).  

Of these databases, GCDD is the only one that was designed for the exclusive purpose of 

studying the spatial distribution of coral diseases; as is summarized by the flowing statement on 

their website: 

The GCDD is the result of a collaboration between UNEP-WCMC 

and NOAA NMFS. The project aims to collate information on the 

global distribution of coral diseases, in order to contribute to the 

understanding of coral disease prevalence. The GCDD is a 

compilation of information from scientific literature gathered 

before 2007 (archive data), as well as new contributions from 

users. The content of the database is being continually updated by 

users, creating a sustainable platform for the dissemination of coral 

disease data.  –   http://coraldisease.org/about  

However, there are critical flaws in the design of the type of data collected by this site.  First, it 

was designed to only collect coral disease data, and therefore provide no information on either 

the non-diseased corals or the underlying coral population at risk of the given disease.  

Consequently, disease prevalence cannot be estimated as the very definition of the word 

“prevalence” requires information on not only the diseased individuals but also information on 

http://www.agrra.org/
http://coraldisease.org/
http://development.unep-wcmc.org/GIS/coraldis/index.cfm
http://reefbase.org/
http://coraldisease.org/about
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the underlying population at risk of the disease.
1
  Additionally, it is impossible to assess the 

severity of a given disease outbreak without information on the underlying population at risk.  

Second, the design of the site is not conducive for performing any type of spatial analysis on 

their disease data, as they provide neither the coordinates of the diseased location, nor the ability 

to download the data.  Though, prior to 2006 the GCDD did show coordinates and allow the data 

to be downloaded.  This previous version of the database is still accessible online 

(http://development.unep-wcmc.org/GIS/coraldis/index.cfm) but is no longer being updated.  

However, while the previous version of the GCDD did provide the coordinates, no information 

was given on the scale at which the data was collected.   Consequently,  it is impossible to know 

whether the geographic coordinates of location with a given disease refers to: (A) the specific 

location of a diseased coral colony; (B) the location of a surveyed transect that contains one or 

more diseased colonies; (C) the general location of a study site in which diseased colonies were 

found; etc.  Therefore, the results of any subsequent analysis performed on this data would be 

highly questionable, as there would be no way of knowing whether or not the diseased data being 

analyzed were referring to the same thing (i.e. data collected at the colony-level should not be 

combined with data that has been summarized to show diseased presence at the transect or site-

level.   

As with the GCDD, Reefbase also does not collect data concerning the underlying 

population at risk; however, the overall design of their database is far better than that of either 

the old or new versions of the GCDD.  For example, unlike the GCDD, Reefbase’s database 

provides the scale at which the data was collected, the source for who collected this data, and 

contains higher resolution location data.  While both sites state that their data was collected from 

                                                 
1
 According to the 28

th
 Edition of Stedman’s Medical Dictionary (2006), Prevalence is defined as “the number of 

cases of a disease existing in a given population at a specified period of time or at a particular moment in time” 

(Stedman 2006, page 1559). 
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published literature, it appears that the coral disease data contained in both Reefbase and the old 

version of the GCDD was taken from the same publications.  I came to this conclusion in 2006 

after downloading diseased Acropora data from both websites and finding that while the number 

of diseased records was the same for both, the locations were slightly different.  After closer 

examination, I found that this was because the coordinates provided in the GCDD has all been 

truncated after the second decimal place, whereas most of Reefbase’s coordinates were carried 

out to at least four decimal places.  Additionally, many of the disease records from Reefbase also 

contained information on the scale and original source.   

Of the three online coral databases, AGRRA’s is the most robust as the design of the 

database lacks many of the flaws listed above.  For example, all of the data contained in this 

database were collected using AGRRA’s sampling design, which facilitates analysis of data 

subsets within their database.  Colony-level information was collected for all the corals present at 

the given location, and not just the corals with a particular disease.  Additionally, the sampling 

scale and resolution of their data is not only known, but it is also clearly defined and the same for 

all of the records within their database.  The only drawback to using the AGRRA data for spatial 

analysis is that the geographic coordinates provided refers to the center of each 200 by 200m site, 

rather than the location of the transects surveyed within each site.  While, none of the colony-

level information has been lost, by summarizing the data at the site-level (instead of the transect-

level) the overall number of locations has been dramatically reduced.  The reduced number of 

point locations limits the ability to perform different types of spatial analysis, as well as the 

subsequent accuracy of any spatial output.  For example, their database contains information on 

9,607 different coral colonies located in the Bahamas; however, any spatial analysis performed 

on this data would be based on the locations of sites (86 total Bahamian sites), rather than the 

locations of transects within each site (1004 total Bahamian transects).         
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Ultimately, while spatial epidemiology-related techniques have the potential to greatly 

improve scientific understanding of coral health, the accuracy of the results are limited by the 

types of data available. 

9.2 Conclusions 

Given the rapidly deteriorating condition of corals reefs worldwide, coupled with the 

grim outlook for their future, it is clear that substantial changes and progress needs to be made in 

the current methods being used to study coral diseases.  First, there needs to be more agreement 

among researchers as to the nomenclature used concerning corals.  Second, more detail needs to 

be recorded when performing disease surveys in the field.   It is also important that a 

standardized approach and specific terminology (such as that proposed by Work and Aeby 2006, 

and shown in Figure 3.9 on page 70) are used when performing these field surveys.  Third, 

current epidemiological models need to be adapted for the marine environment, including 

creating alternative criteria for disease causation for cases in which Koch’s postulates are not 

appropriate (Sutherland et al. 2004).  Last, a geospatial analytical component (such as the 

protocols laid out in Chapter 7) needs to be added to these epidemiological models so that the 

spatial nature of these epizootics can be studied at local, regional, and global scales.  

As the search for causation continues, surveillance and proper documentation of spatial 

disease patterns have the potential to not only improve scientific understanding of coral 

pathology, but also facilitate the conservation and protection of reefs by showing reef managers 

which areas of the reef are at the greatest risk.  It is my hope that the material I have presented in 

this dissertation will provide researchers with the necessary tools and information needed for 

them to perform the most accurate and powerful types of geospatial analysis possible based on 

the data they have available, as well as assist in selecting appropriate sampling designs for future 

outbreak investigations. 
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Appendix A – Spatial Parameter Estimation 

A.1  Grid Cell Resolution Estimation Methods 

“We suggest following the methodology by Ratcliffe (1999) where cell size resolution is the 
result of dividing the shorter side of the minimum bounding rectangle (i.e. the shortest 

of the two extents between the maximum x and minimum x, and the maximum y and 
minimum y) by 150.” [1] p. 159 

 
 

Grid Cell Resolution Estimated using UTM coordinates 

 

OR 

Grid Cell Resolution Estimated using UTM coordinates 
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A.2  Visual Calibration using an Artificial Cluster Dataset 

Creating the Artificial Cluster Dataset [2] 

1) First I created a polygon of the total habitat sampled by Mayor et al.’s 2006 [3] study: 

         
 

2)  Hawth’s Tools extension was used to generate 4 random point locations within this 
polygon 

 
 

3) I used these 4 points to define the centers of 4 clusters.   

- Clusters were by generating a circle with a certain radius size around each point.   

- Radii of 50m, 100m, 250m, & 500m, were chosen in order to test the accuracy of the 
spatial analysis software on detecting clusters of different sizes within the same 
dataset.   

- The radii were assigned to the clusters based on the associated Cluster ID number , 
resulting in the following clusters – radii combinations: Cluster 1—50m, Cluster 2—
100m, Cluster 3—250m, & Cluster 4—500m.   

- The boundaries of these newly defined clusters, along with the identification 
number of each cluster were then mapped.   

- This resulted in Cluster 2 falling within the boundaries of Cluster 4.  I decided to 
keep this, in order to see how the spatial analysis software handled the situation [4]. 
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4) Next, I used Hawth’s Tools to generate random point locations within this study area.  
These point locations were used to simulate the locations of transects containing 
Acropora palmata from Mayor’s study.  Since Mayor et al.’s study ultimately surveyed 
375 transects, a total of 375 point locations were randomly generated for the Artificial 
dataset.   

Creating the clustered WBD point locations 
- Since Mayor’s study found WBD in 44 of the 375 

transects, 44 points were randomly generated for 
the artificial dataset.   

- This was done by having Hawth’s  Tools generate 
11 random points within each of the 4 cluster 
boundaries.  

- Thus, Clusters 1-3 each had 11 WBD points within 
them, and Cluster 4 had 22 WBD points (since Cluster 2 was within its boundaries).   

- Note:  the 4 points used to define the center of these artificial clusters were not used 
to simulate a transect containing WBD.   

Creating the artificial non-WBD point locations  
- Hawth’s Tools was used to generate 331 random 

point locations within the study area.  

- Note:  Non-WBD points were allowed to fall 
within the WBD Cluster Boundaries, in order to 
simulate non-diseased, possibly resistant, corals 
during a WBD outbreak  

 
 

- Thus this artificial dataset of randomly generated 
points can serve as a proxy for the transect 
locations in Mayor et al.’s 2006 study.   

 

 

- The following types of Spatial Analysis will be performed on this artificial dataset in 
order to determine which types of analysis and parameter settings within these 
analyses will generate results that most closely proximate the 4 artificially defines 
WBD clusters.  

- The analyses, and parameter settings within them, found to work best on the 
artifical dataset will then be applied to Mayor’s actual data.  

- In a sense this dataset will be used to calibrate the spatial analysis programs for 
Mayor’s data.  Thus, substantially increasing the probability that spatial patterns 
found in Mayor’s data are real, and not just artifacts of the user defined parameter 
settings during the analysis [2, 5-7].
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Calibrating the Spatial Parameters using the Artificial Cluster Dataset [2-3, 5-7] 
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A.3  Plug-in Equation Bandwidth Estimation Methods 

 
A.3.1  Default Search Radius used by ArcView’s Kernel Density  hAV    [8-9] 

    
[   (   )]

  
 

 
 

A.3.2   Bailey & Gatrell’s h (hBG) [8-10] 
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A.3.3 Maximal Smoothing Bandwidth (hmax ) [11-12] 
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A.3.4 Optimized Bandwidth (hopt ) [11-14] 
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A.3.5 Reference Bandwidth (href )  [15-19] 

 
href  is when h is the “optimum value with reference to a known standard distribution.”  

[15-19]  
       

“Since the HRE uses a standard bivariate normal probability density function to 
estimate the utilization distribution, href is calculated as the square root of the mean 

variance in x (varx) and y (vary) co-ordinates divided by the sixth root of the number of 
points[20]”[15-16] 
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A.4 Regression-based Bandwidth Selection Criterion 
A.4.1 Bandwidth Selection Criteria [21] 

 

 
 
ArcToolbox  Spatial Statistics Tools  Modeling Spatial Relationships  Ordinary Least Squares
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 Geographically Weighted Regression (GWR) 
 

  
 
 

Repeat the above GWR analysis using distances of 100m-1,000 (in 50m increments) 
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A.4.2 The Corrected Akaike’s Information Criterion (AICc)  hAICc  [21] 
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A.4.3  The Generalized Cross-Validation Criterion (GCV)  hGCV  [21] 

 

   
 
 
A.4.4  The Least Squares Criterion (LSC)  hLSC   [21] 
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A.4.5 The Least Squares Cross-Validation (LSCV) Criterion  hCV   [15-17, 20-23] 

The Least-Squares cross-validation (LSCV) calculates the smoothing parameter (hcv) by finding the h that 
minimizes the mean integrated square error (MISE) by minimizing the score function CV(h) for the 
estimated error between the true density function & kernel density estimate [15-17, 20].  

 

“Where the distance between pairs of points (   ) is calculated as [16]: 

 

The minimum value of CV(h) is found by testing values of h between 0.01href  and href, selected using a ‘Golden 
Section Search’ algorithm [22].  The resulting smoothing parameter that minimizes the score function is 

called hcv.” [15-17] 

Note: “In situations where the utilization distribution is not unimodal, the LSCV method has been shown to 
overcome the problem of over-smoothing associated with the use of href  [20]. However, the LSCV method is 
not always successful in finding a smoothing parameter that will minimize the MISE. In these cases, the HRE 
will report a low value for hcv that is near the smallest value that can be tested (i.e., 0.01 href).  This will result 
in a utilization distribution that is seriously under-smoothed.  Indeed, the LSCV method has a propensity to 
show structure in the data when none exists [23].” 

 

A.4.6 The Biased Cross-Validation (BCV) Criterion  hBCV2   [15-17, 20-23] 

The biased cross-validation (BCV) technique that may strike a balance between the tendency of href to 
oversmooth and hcv to undersmooth.   “In contrast with the LSCV method, BCV attempts to find a value for h 
that minimizes an estimate of the asymptotic mean integrated square error (AMISE).  AMISE is a large 
sample (e.g., n>50) approximation of the MISE [25].  Thus, it also provides an estimate of the difference 
between the true density function and the kernel density estimate.  However, it is computationally faster 
and easier to calculate than MISE and provides a more direct indication of the performance of h values [23-
25].   In the HRE, the function to be minimized is [16-17, 23]: 

 

where the distance between pairs of points (   )  is again calculated as: 

 

Similar to the LSCV method, values of h between 0.01href  and href, are selected for testing using a "Golden 
Section Search" algorithm [22].  The resulting smoothing parameter is called hbcv2. 

 
Simulation studies show the BCV method performs quite well and with reasonable variability in comparisons 
with the LSCV and reference methods [23].  However, the BCV method has not been investigated in the 
context of home range estimation.” [15-17].  

  



 

271 

A.4.7 hCV, href , & hBCV2  calculated by the HRE extension in ArcView 3.3x   [16] 

 
   Case Data Population Data 

   
AC Clustered Pts WBD Transects AC all points 

All BUIS 
Transects 

  Swihart & Slades 2.51297 0.05032652 0.413063 0.083844 

  Schoener Index 0.301527 2.10898 1.71616 2.03465 

  X sample variance 2774359.2500000  1796403.125 2670535.7500 2254249.000 

  Y sample variance 128438.5390625  447127.25 561252.93750 525819.9375 

S
ta

n
d

a
rd

iz
a

ti
o

n
 S

ty
le

 

Unit 
Variance 

hcv 0.054559  0.134373 0.099496 0.141936 

href 0.5322201  0.532220 0.3723872 0.372387 

hbcv2 0.054559  0.134373 0.099496 0.141936 

X 
Variance 

hcv 90.876038  180.099686 162.594131 213.105682 

href 886.4873657  713.334351 608.546814 559.108032 

hbcv2 90.876038  180.099686 162.594131 213.105682 

None 

hcv 65.729668  138.610870 100.097137 132.427002 

href 641.186829  563.692444 473.370575 439.043518 

hbcv2 65.729668  138.610870 100.097137 132.427002 

Standardization 
Style= Unit or X 

Variance 

h = hcv / href 0.102513  0.252476 0.267184 0.3871153 

h = href/href 1.000000  1.000000 1.000000 1.0000000 

h = hbcv2/href 0.102513  0.252476 0.267184 0.381153 

Standardization 
Style = None 

h = hcv / href 0.102513  0.245898 0.211456 0.301626 

h = href/href 1.000000  1.0000000 1.000000 1.000000 

h = hbcv2/href 0.102513  0.245898 0.211456 0.301626 
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A.5. Nearest Neighbor Analysis Bandwidth Selection Methods 

A.5.1 Mean Nearest Neighbor Analysis (Nna)  hNna   [1, 8-9, 27] 

 

  
 

Click on the Spatial description tab & then click on the Distance Analysis I sub-tab 
 
Check the Nearest neighbor analysis (Nna) box & set the # of nearest neighbors to be computed to “20” 

(“this will generate the mean nearest neighbor distance values for 1 to 20K orders” [1, p. 158]  
 

then hit “Compute” 
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The Results for the Nna of the Artificially Clustered point data 

 

 

 

Results file saved as: 
“Nna_AC_clustered.dbf” 
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The Results for the Nna of all 375 points in the Artificially Clustered dataset 

 
 

 

 

 

 

Results file saved as: 
“Nna_AC_all.dbf” 
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The Results for the Nna of the WBD transect data 

 

  
  

Results file saved as: 
“Nna_BUIS_WBD.dbf” 
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The Results for the Nna of all 375 BUIS transects 

  

 
 
 
 
 
 

Results file saved as: 
“Nna_BUIS_all.dbf” 
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A.6 Summary of Estimated Bandwidths  

 Bandwidth Calculation based on 

 Numerator data (    ) Denominator data (     ) 

 

Clustered Points WBD transects all Artificial points All BUIS transects 

hAICc   
450.00 1298.85 

hAV 38.67 88.36 106.83 95.79 

hBCV2 65.73 138.61 100.10 132.43 

hBG 892.96 892.96 581.72 581.72 

hGCV 
  

200.00 200.00 

hLSC 
    

hLSCV 65.73 138.61 100.10 132.43 

hmax 923.42 812.80 628.81 583.27 

hNna , K1 73.65 183.64 81.61 80.67 

hNna , K2 101.89 273.22 124.87 117.91 

hNna , K3 122.04 382.86 155.66 148.64 

hNna , K4 141.75 551.73 185.32 174.84 

hNna , K5 160.66 673.54 215.06 200.43 

hNna , K6 173.72 732.79 237.25 223.09 

hNna , K7 194.21 786.19 261.24 242.91 

hNna , K8 212.59 826.52 279.57 262.09 

hNna , K9 231.27 877.99 296.77 279.78 

hNna , K10 248.40 927.14 314.90 295.29 

hNna , K11 523.81 983.40 332.84 310.63 

hNna , K12 541.32 1023.27 347.85 324.93 

hNna , K13 578.91 1090.89 364.53 339.54 

hNna , K14 627.16 1180.93 380.36 352.15 

hNna , K15 650.96 1229.09 395.64 366.83 

hNna , K16 694.68 1269.91 409.60 379.26 

hNna , K17 716.80 1319.00 422.91 391.69 

hNna , K18 739.88 1376.15 435.23 402.46 

hNna , K19 760.15 1434.19 448.98 414.79 

hNna , K20 785.03 1515.24 460.21 426.64 

hNna , Kmean 413.95 931.88 307.52 286.73 

hopt 603.64 531.33 369.29 342.55 

href 641.19 563.69 473.37 439.04 

hVC 
  

100.00 100.00 

 



 

278 

 

 

 

        

A.7  Literature Cited in Appendix A 

1. Chainey S, Ratcliffe J (2005) GIS and Crime Mapping. John Wiley & Sons, Ltd, Chichester, West Sussex, 
England 

2. Lentz JA, Curtis AJ, Sammarco PW, Mayor PA (2008) Applying Medical Geography to Identify Spatial 
Hotspots of Coral Diseases. 11th International Coral Reef Symposium (ICRS), Fort Lauderdale, FL 

3. Mayor PA, Rogers CS, Hillis-Starr ZM (2006) Distribution and abundance of elkhorn coral, Acropora 
palmata, and prevalence of White-Band disease at Buck Island Reef National Monument, St. Croix, US 
Virgin Islands. Coral Reefs 25:239-242 

4. Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007) Analyzing the spatial structure of a Sri Lankan tree 
species with multiple scales of clustering. Ecology 88:3088-3102 

5. Cai Q, Rushton G, Bhaduri B (2011) Validation tests of an improved kernel density estimation method for 
identifying disease clusters. Journal of Geographical Systems:1-22 

6. Lentz JA, Curtis AJ, Mayor PA (2009) An Examination of how GIS and spatial analysis can be used to better 
understand coral health Graduate Student Symposium (GSS), Dauphin Island, AL 



 

279 

7. Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point 
patterns in plant ecology. Plant Ecol 187:59-82 

8. Williamson D, McLafferty S, Goldsmith V, McGuire P, Mollenkopf J (1998) Smoothing Crime Incident Data: 
New Methods for Determining the Bandwidth in Kernel Estimation 

9. Williamson D, McLafferty S, Goldsmith V, Mollenkopf J, McGuire P (1999) A Better Method To Smooth Crime 
Incident Data ESRI ArcUser Magazine 1-5 

10. Bailey TC, Gatrell AC (1995) Interactive Spatial Data Analysis. Longman Scientific and Technical, Essex, 
England 

11. Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative Geography Perspectives on Spatial Data 
Analysis. SAGE Publications, London 

12. Terrell GR (1990) The Maximal Smoothing Principle in Density Estimation. Journal of the American 
Statistical Association 85:470-477 

13. Bowman A, Azzelini A (1997) Applied Smoothing Techniques for Data Analysis. Oxford University Press, 
Oxford 

14. Lentz JA, Blackburn JK, Curtis AJ (2011) Evaluating Patterns of a White-Band Disease (WBD) Outbreak in 
Acropora palmata Using Spatial Analysis: A Comparison of Transect and Colony Clustering. PLoS one 
6:e21830 

15. Carr AP, Rodgers AR (2002) HRE: The Home Range Extension for ArcViewTM (Beta Test Version 0.9, July 
1998).  Tutorial Guide. Centre for Northern Forest Ecosystem Research, Ontario Ministry of Natural 
Resources, Ontario 22 

16. Rodgers AR, Carr AP (2002) HRE: The Home Range Extension for ArcViewTM (Beta Test Version 0.9, July 
1998).  User's Manual. Centre for Northern Forest Ecosystem Research, Ontario Ministry of Natural 
Resources, Ontario 27 

17. Rodgers AR, Kie JG (2010) HRT: Home Range Tools for ArcGIS(R) (Version 1.1, June 2007).  User's Manual 
(Draft September 28, 2010). Centre for Northern Forest Ecosystem Research, Ontario Ministry of 
Natural Resources, Ontario 26 

18. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London 

19. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 
70:164-168 

20. Worton BJ (1995) Using Monte Carlo simulation to evaluate kernel-based home range estimators. J Wildl 
Manage 59:794-800 

21. Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted Regression: the analysis of 
spatially varying relationships. John Wiley & Sons, West Sussex 

22. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific 
computing. Cambridge Univ. Press, Cambridge, UK 

23. Sain SR, Baggerly KA, Scott DW (1994) Cross-Validation of multivariate densities. Journal of the American 
Statistical Association 89:807-817 

24. Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. 
Journal of the American Statistical Association 91:401-407 

25. Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, Ltd., London, UK 

26. Williamson D (1999) K-NearestNeighbor (AS11177.zip). ArcScript., Available at: 
http://arcscripts.esri.com/details.asp?dbid=11177  

27. Levine N, Associates (2009) CrimeStat(R) III, version 3.2a: A Spatial Statistics Program for the Analysis of 
Crime Incident Locations. The National Institute of Justice, Washington, D.C. 1036 



 

280 

Appendix B – Analytical Procedures 

B.1 Kernel Density Estimates (KDE)  

Step 1) Perform Single KDE analyses on the case data using CrimeStat III  
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Step 2) Bring grid file into ArcMap 9.3.1   

 
 
Step 3) Download, Install, and then Enable the XTools Pro extension in ArcMap  

Open the XTools toolbar go to “Feature Conversions,” select “Convert Features to Points” 

 
 
Step 4) Enable the Spatial Analyst Extension  
Open the Spatial Analyst toolbar, go to “Interpolate to Rater,” select “Inverse Distance Weighted” 
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Step 5) Define the Colorscheme for the Newly Created Raster version of the KDE analysis 
Right Click on the Raster Layer, select “Properties,” go the “Symbology” Tab, select “Classified” 

 
 
 
Step 6)  Make the Raster Layer Semi-Transparent 

While still in the “Properties” window for the Raster Layer, go the “Display” Tab 
Set the Transparency to 40%  
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Step 7)  Create Contours for the different KDE rates  
Open the Spatial Analyst toolbar, go to “Surface Analyst” and select “Contour…” 

 
 
Step 8)  Select Contours of Interest & then Format how they’ll be displayed 

8a. Open the Contour Layer’s “Properties,” go the “Definition Query” Tab & select “Query Builder”  
8b. Then go the “Symbology” Tab and change the colors to match the symbology for the Raster file 

  8a    8b  
 
Step 9) Display the Finished KDE Product 
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B.2   Spatial Filtering using Fixed Distance Filters in DMAP  

Step 1: Creating the Grid File 

 
 
 

*DMAP II is a 16-bit program, this means it can only handle 
216 unique values, which is ±32,768 or 65,536 total values.  
Thus this version of DMAP can only handle datasets with 
<65,536 Total Grid Points, for this reason it’s a good idea to 
check the total number of grid points in the newly generated 
“GRID.PRN”  
 
To check this open the GRID.PRN file in Microsoft excel  
(it’s usually easier to open the file from within Excel rather 
than double clicking on the actual file as your computer may 
not know that you want prn files to open in excel). 
 
 
 

 
  

Column A = Grid Point ID 

Column B = Longitude (in decimal degrees) for this location 

Column C = Latitude (in decimal degrees) for this location 

*Total # of Grid Points = Count(A1:A11396) = 11,396 Total Grid Points 
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Step 2: Computing the Distances from the health events to the Grid Points 

 
 

2a:  Computing the Distances from the Numerator (i.e. Case) Events to the Grid Points 

 
 
2b: Computing the Distances from the Denominator (i.e. Population) Events to the Grid Points 

 

Steps 2a & 2b create the following 2 files: EVGRDDST.N1 & EVGRDDST.D1 
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Step 3: Compute the Observed disease rates within specified filter size 
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Step 4: Estimate the significance of observed disease rates, using Monte Carlo Simulations 

 
 

 
  



 

288 

Step 5: Import the GRID.PRN, RATE.DAT, & SIGNIF.DAT files into Excel  
5a: Add a Header row to each of the 3 files 

 

5b: Copy all Grid_IDs from GRID.PRN & paste them after the last Grid ID in column A of both the RATE & SIGNIF files 

   

5c: Remove the Duplicates  

 

   
 
5d: Sort both the RATE.DAT & SIGNIF.DAT files by ascending Grid_ID 

 

5e: Copy the Sorted Data from the 3 files into a new spreadsheet 

5f: Sort this new spreadsheet by descending MC_value (so the initial records contain values rather than being blank) 

 

   

5g: Save this spreadsheet as either a DBFIV or a CSV file 
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Step 6: Display DMAP results in ArcMap 

 6a: Import the NonWeighted_DMAP2_Results.csv file into ArcMap 
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6b:  Interpolate both the Clustering Rates & the Monte Carlo Significance values 

 

Save the IDW Output Rasters as “DMAP2_Rate” & “DMAP2_MC”  

      

 

6c:  Change the Symbology for the color-ramped Rate file as follows 

Right Click on the “DMAP2_Rate” layer & select 
Properties, then click the Symbology Tab 

 

Change the # of classes from 9 to 8 then click 
“Classify” 

 

Change the Classification Method & Break 
Values so that they match the screen captures 

 

Click OK 
 

Now adjust the Labels & Symbol colors so that 
they match the screen captures on the right 

 

To change the colors right click on a color, click 
“Properties for Selected Colors…” then click 

“More Colors…” change the HSV values for 
each color so that they match the table to the 

right 
 

When you’re satisfied with the revised 
symbology for the Clustering Rates color-

ramped raster file, Click OK 
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6d: Create Contours of the Monte Carlo Significance Raster data  
Open ArcCatalog  open ArcToolbox expand the Spatial Analyst Tools expand the Surface toolbox & select the Contour tool 

 
Now overlay these p = 0.05 contours over the clustering rates & compare results to the pre-defined cluster boundaries 

(shown in black) 

 

6e: Display final Map 
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Appendix C – Supplemental Material from Chapter 8*
1
 

C.1 Supplemental Materials and Methods  

The computed Ripley’s K values were plotted against the distances tested in for each of 

the six coral types (Figure C.1).  To facilitate interpretation of the above spatial distributions, I 

normalized the Ripley’s K output by subtracting the expected values (d) from the observed 

values (L(d)), so that the new benchmark for evaluating complete spatial randomness (CSR)  was 

y=0 (as opposed to the  pre-normalized benchmark of πd
2
).   In order to determine whether or not 

clustering was present (and if so whether or not the aggregation was statistically significant) the 

normalized K values (L(d) – d) were then plotted against distance (Figure C.2).  Next, to test the 

null hypothesis (HC3) that transect locations that are weighted by the number of colonies within 

them are not significantly more clustered (or dispersed) than the underlying pattern of just their 

locations, I plotted the weighted K using the confidence intervals (CIs) for the unweighted K 

(Figure C.3).  I plotted the reverse combination (unweighted K and the CIs for the weighted K) 

in order to test the null hypothesis  (HC4) that the colony-level dataset would be more clustered 

or dispersed than they would be by chance alone (Figure C.4).   

C.2 Supplemental Results 

The Ripley’s K statistics were computed, the underlying coral population continued to 

show signs of significant clustering throughout all of the tested spatial distances at the transect-

level (see Figure C.1B and C.2B), and for the most of the distances at the colony-level (see 

Figure C.1D and C.2D), with the highest degree of significant clustering occurring at distance  

                                                 
*
Supplemental Material from Chapter 8 has been reprinted with permission from PLoS ONE with slight 

modifications.  For original publication please see  Lentz JA, Blackburn JK, Curtis AJ (2011) Evaluating Patterns of 

a White-Band Disease (WBD) Outbreak in Acropora palmata Using Spatial Analysis: A Comparison of Transect 

and Colony Clustering. PLoS one 6:e21830 
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Figure C.1.  Ripley's K plots of the diseased and underlying population at both the transect and 

colony-levels.  Ripley's K plots comparing the spatial patterning of white-band disease (WBD) 

and the underlying Acropora palmata population, and showing the affect distance has on each of 

these spatial patterns.  The null distribution of complete spatial randomness (CSR) is represented 

by the Expected K values (d) which are equal to the distance interval in which they are being 

tests (for example, the Expected K value at a distance of 500m would be 500), thus as the 

distance threshold increases so will the Expected K values.  In all cases the Observed K (thick 

lines), and their corresponding 99% confidence intervals (thin lines) fell above the CSR 

benchmark (dashed line) indicating that both WBD and the underlying coral population had 

aggregated (clustered) spatial distributions across all of the tested distances at both the transect 

and colony-level.  The results of the non-weighted K functions (A–B) assess the degree of 

clustering or dispersion present in the spatial distribution of the transect locations; while the 

results of the weighted K functions (C–D), in which each transect location was weighted by the 

number of colonies within it, evaluate the degree of clustering or dispersion of the colonies.  (A) 

Significant clustering (shaded region) was detected in the spatial distribution of transects with 

WBD present at distances to ≤1.1km, and non-significant clustering was detected up to 2.5km 

(the maximum distance tested).  (B) The spatial distribution of the 375 transects containing A. 

palmata showed significant clustering at all of the tested distances.  (C) When the locations of 

transects with WBD present were weighted by the number of WBD colonies within them, their 

resulting spatial distribution was clustered, but not to a statistically significant extent.  (D) When 

the transect locations of the underlying population were weighted by the total number of colonies 

within them, their resulting spatial distribution showed signs of aggregation at all of the distances 

tested, but only detected significant clustering at distances ≤1.05km and ≥1.75km. 
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thresholds of 1450m and 1700m for the transect- and colony-level datasets respectively (see 

Figure C.2B,D).  Clustering was detected in the distribution of diseased corals for all of the 

tested distances, with the greatest degree of clustering occurring at distances of 1100m for the 

transect-level data (see Figure C.2A) and 1400m for the colony-level data (see Figure C.2C), 

with distances ≤ 1100m showing statistically significant spatial aggregation of WBD at the 

transect-level.  In both versions of the dataset, the normalized Observed K for WBD takes a 

sharp dip at distance threshold of 350m (see circled regions of Figure C.2A,C).  Overall, the 

plots based on the normalized Ripley’s K values were preferred over plots based on the raw K 

values, because when the data were normalized such that the CSR benchmark was set to y=0, the 

hyperbolic nature of the plots was removed and the resulting graphs were much more expressive.   

Figure C.3, shows the graphical test of the null hypothesis (HC3) that transects weighted by the 

number of colonies within them are not significantly more clustered or dispersed than the 

underlying spatial distribution based on the transect locations alone.  The HC3  hypothesis was 

rejected for WBD at distances < 1100m because the colony-level Observed K were greater than 

the upper CI for the transect-level Observed K indicating that transects weighted by the number 

of WBD colonies within them were significantly more clustered than their locations alone would 

suggest (see Figure C.3A).  However, HC3 was accepted when WBD was examined at distances 

>1100m, as the Observed K for WBD colonies was within the upper and lower CI for the 

Observed K of the transects containing WBD, indicating that the spatial aggregation of WBD 

was not statistically significant at these distance scales.  This hypothesis was rejected for the 

underlying population for all of the distance scales tested because the colony-level Observed K 

was above the upper CI for the transect-level population data, indicating that the transects 

weighted by the number of colonies within them were, in fact, significantly more clustered than 

the spatial distribution of the transect locations alone (see Figure C.3B). 
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Figure C.2.  Normalized Ripley's K plots depicting the same information as shown in Figure 

C.1. The transect locations for both white-band disease (WBD, A) and the underlying population 

(B) were clustered at all spatial distances tested (0–2.5km); with the population showing 

significant clustering (shaded region) at all distances <2.5km and significant clustering only 

occurring at distances ≤1.1km for transects in which WBD was present.  (C) Transects 

containing WBD colonies still appear to be spatially aggregated across all of the tested spatial 

scales, but not to a statistically significant extent. (D) As in the transect-level analysis, the 

distribution of transects containing both diseased and non-diseased A. palmata colonies was also 

spatially aggregated; however, when the transects are weighted by the number of colonies within 

them, they only appear to have statistically significant clustering when tested using distances 

thresholds ≤1.15 or ≥1.7km. 

Figure C.4 shows a graphical test of the null hypothesis (HC4) that transects weighted by 

the number of colonies within them would be more clustered or dispersed than they would be by 

chance alone.  HC4 was rejected for both WBD (Figure C.4A) and the underlying population 

(see Figure C.4B) because the Observed K based on the transect-level data fell within the CI 

envelope based on the colony-level Observed Ks. 
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Figure C.3  Normalized Ripley's K Plots used to test the null hypothesis HC3.  Graphical 

representation of the test of the null hypothesis (HC3) that transects weighted by the number of 

colonies within them will not be significantly more clustered or dispersed than the underlying 

spatial distribution based on the transect locations alone.  In order for the null hypothesis to be 

accepted the Observed K based on the colony-level data (thick line) must fall within the upper 

and lower 99% confidence intervals (CIs, depicted as thin lines) estimated using the transect-

level data.  (A) The null hypothesis was rejected at distances <1.1km and accepted at distances 

>1.1km for white-band disease (WBD).  (B) The null hypothesis was rejected for the population 

data at all of the distances tested. 

 

 

Figure C.4 Normalized Ripley's K Plots used to test the null hypothesis HC4. A graphical 

representation of the test of the null hypothesis (HC4) that the spatial distribution of the colony-

level data would be more clustered or dispersed than they would be through chance alone.  This 

hypothesis was rejected for both (A) white-band disease (WBD) and the (B) underlying 

population because the Observed K (thick line) based on the transect-level data falls within the 

99% confidence intervals (CIs, depicted as thin lines) based on the Observed K estimated using 

the colony-level data. 
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