Home Range \& Habitat Preferences of Eastern Box Turtles at Jug Bay Wetlands Sanctuary

Jennifer Lentz

Summer 2004: Jug Bay Fellow

Geographic Distribution of the Eastern Box Turtle

Upland Habitats

Non-Tidal Wetland

Tidal - Wetlands Habitats

Scrub - Shrub (SS) $=3 \quad$ Phragmites (PH)

Methods for Measuring Home Range Size

> Bivariate Normal
 > Minimum Convex Polygon

> Kernel Home Range

Bivariate Normal Home Range (Jennrich and Turner, 1969)

Minimum Convex Polygon (Molr, 1947)

Kernel Home Range (Worton, 1989)

Home Range Measurement comparison

Study Objectives

To determine...

- Home range size and whether male and female range size differ
- The habitats included within each home range
- The differences between home range measuring techniques (Mark-Recapture vs. Telemetry)
- Whether turtles prefer certain habitats over others

Materials and Methods

Data Collection Process

Home Range Maps

For Female \# 71

Female \#71

June 25 ${ }^{\text {th }}, 1996$

Female \#71

June 28th 1999

Female \#71

July $11^{\text {th }}, 2000$

Female \#71

May 19 ${ }^{\text {th }}, 2001$

Female \#71

May 20 ${ }^{\text {th }}, 2001$

Female \#71

May $22^{\text {nd }}, 2001$

Female \#71

May 23 ${ }^{\text {rd }}, 2001$

Female \#71

May 24 ${ }^{\text {th }}, 2001$

Female \#71

May 29 ${ }^{\text {th }}, 2001$

Female \#71

June $3^{\text {rd }}, 2001$

Female \#71

June $7^{\text {th }}, 2001$

Female \#71

June 9 ${ }^{\text {th }}, 2001$

Female \#71

June 18 ${ }^{\text {th }}, 2001$

Female \#71

June 20th 2001

Female \#71

June $22^{\text {nd }}, 2001$

Female \#71

June 27 ${ }^{\text {th }}, 2001$

Female \#71

June 30th, 2001

Female \#71

July $2^{\text {nd }}, 2001$

Female \#71

July 9th 2001

Female \#71

July $11^{\text {th }}, 2001$

Female \#71

July $16^{\text {th }}, 2001$

Female \#71

July $17^{\text {th }}, 2001$

Female \#71

August $1^{\text {stt }}, 2001$

Female \#71

August 6 th, 2001

Female \#71

August 13 th, 2001

Female \#71

August 17 ${ }^{\text {th }}, 2001$

Female \#71

August 22 ${ }^{\text {nd }}, 2001$

Female \#71

August 29th, 2001

Female \#71

August $30^{\text {th }}, 2001$

Female \#71

September $5^{\text {th }}, 2001$

Female \#71

September 6 ${ }^{\text {th }}, 2001$

Female \#71

September $12^{\text {th }}, 2001$

Female \#71

September 19 ${ }^{\text {th }}, 2001$

Female \#71

September 20 ${ }^{\text {th }}, 2001$

Female \#71

September 24h, 2001

Female \#71

October $3^{\text {rd }}, 2001$

Female \#71

October 16 ${ }^{\text {th }}, 2001$

Female \#71

October 18 ${ }^{\text {th }}, 2001$

Female \#71

May $23^{\text {rd }}, 2002$

Female \#71

August $5^{\text {th }}, 2002$

Female \#71

June 19 ${ }^{\text {th }}, 2003$

Female \#71

July $15^{\text {th }}, 2003$

Female \#71

Home Range based on Random sightings from June 1996 - July 2003

Female \#71

Home Range based on Telemetry sightings from May 2001 - October 2001

Female \#71

Home Range based on Random \& Telemetry sightings from June 1996 - July 2003

Home Range Maps

For Male \# 186

Male \#186

June $26^{\text {th }}, 1998$

Male \#186

June 15n, 1999

Male \#186

August 22nd 1999

Male \#186

May $2^{2 n^{\text {nd }}, 2000}$

Male \#186

June $8^{\text {th }}, 2000$

Male \#186

June 15 ${ }^{\text {th }}, 2000$

Male \#186

July $20^{\text {th }}, 2000$

Male \#186

July $25^{\text {th }}, 2000$

Male \#186

August 1st, 2000

Male \#186

August $10^{\text {th }}, 2000$

Male \#186

September 22nd 2000

Male \#186

September 23rd, 2000

Male \#186

June 14th, 2001

Male \#186

June 19th, 2001

Male \#186

June 28ith, 2001

Male \#186

July $17^{\text {th }}, 2001$

Male \#186

August 2nd, 2001

Male \#186

October 11th, 2001

Male \#186

June 11th, 2002

Male \#186

May 20 ${ }^{\text {th }}, 2003$

Male \#186

May $21^{\text {stt }}, 2003$

Male \#186

May 23 ${ }^{\text {rd }}, 2003$

Male \#186

May $28^{\text {th }}, 2003$

Male \#186

May $30^{\text {th }}, 2003$

Male \#186

June 2nd, 2003

Male \#186

June 4 $4^{\text {th }}, 2003$

Male \#186

June 9 ${ }^{\text {th }}, 2003$

Male \#186

June $12^{\text {th }}, 2003$

Male \#186

June 16 ${ }^{\text {th }}$, 2003

Male \#186

June 19 ith, 2003

Male \#186

June $23^{\text {rd }}, 2003$

Male \#186

June $26^{\text {th }}-$ June $^{28^{\text {th }}}$, 2003

Male \#186

July $1^{\text {st }}, 2003$

Male \#186

July 3 $3^{\text {rd }}, 2003$

Male \#186

July 9th, 2003

Male \#186

July $11^{\text {th }}, 2003$

Male \#186

July $13^{\text {th }}, 2003$

Male \#186

July $15^{\text {th }}, 2003$

Male \#186

July 17 ${ }^{\text {th }}, 2003$

Male \#186

July $21^{\text {stt }}, 2003$

Male \#186

July $30^{\text {th }}, 2003$

Male \#186

August 1st, 2003

Male \#186

August $12^{\text {th }}, 2003$

Male \#186

August 19 ${ }^{\text {th }}, 2003$

Male \#186

August $20^{\text {th }}, 2003$

Male \#186

August 28 ${ }^{\text {th }}, 2003$

Male \#186

September $5^{\text {th }}, 2003$

Male \#186

September 11 ${ }^{\text {th }}, 2003$

Male \#186

September $16^{\text {th }}, 2003$

Male \#186

September 30th - October $1^{\text {st }}, 2003$

Male \#186

October 4 $4^{\text {th }}, 2003$

Male \#186

October 7 ${ }^{\text {th }}, 2003$

Male \#186

October $15^{\text {th }}-$ October $21^{\text {st }}, 2003$

Male \#186

October 22nd 2003

Male \#186

November 8 ${ }^{\text {th }}, 2003$ - April $7^{\text {th }}, 2004$

Male \#186

April 26 ${ }^{\text {th }}, 2004$

Male \#186

May 14 ${ }^{\text {th }}, 2004$

Male \#186

Home range based on random sightings from June 1998 - May 2004

Male \#186

Home range based on Telemetry sightings from May 2003 - April 2004

Male \#186

Home Range based on Random \& Telemetry sightings from June 1998 - May 2004

Results

Comparison of home range size using mark-recapture and telemetry sightings, as well as the compiled sightings data.

Technique Comparison using T-tests

\square Mark-Recapture \square Telemetry \square Compiled

	Factors being compared	df	T-Stat	p
	Mark-Recapture	25	1.706	0.100
	Telemetry	16	2.234	0.040*
	Compiled	20	2.589	0.018*
	M.-R. vs. Telemetry	17	-2.036	0.058
	M.-R. vs. Compiled	21	-2.465	0.022*
	Telemetry vs. Compiled	33	-0.063	0.950
	M.-R. vs. Telemetry	23	-1.217	0.236
	M.-R. vs. Compiled	29	-1.412	0.169
	Telemetry vs. Compiled	25	-0.411	0.685

Habitat comparison between measurement techniques

Upland
Meadow
Open Forest
Dense Forest

Non-Tidal Wetland Tidal Wetland
\square Flood Plain

Tidal Wetland / Marsh \square Phragmites
\square Scrub-Shrub

Comparison of T. carolina home ranges using different measuring and computation methods

| Location | Collection
 Method | Computation
 Method* | Area (Ha)
 Mean | | Range | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Reference

[^0]Convex Polygon (MCP); Minimum Area (MA); Ornstein-Uhlenbeck (O-U)

Total Home Range Comparison

Female

$$
\mathrm{n}=20
$$

Male
$\mathrm{n}=17$

Juvenile $\mathrm{n}=3$

Total Home Range Comparison

Jug Bay vs. Patuxent Research Center

Males

Females

Males

Females

Male and Female home ranges in a 5 acre $(2.025 \mathrm{Ha})$ plot vs the plotted areas of male and female T. c. carolina in the same size plot from Stickel's 1950 study.

Discussion

Home Range

$>$ Overall, the home ranges were much larger than those reported elsewhere, while having the third largest sample size.
$>$ The difference in home range size may be due to how each study defined home range, or how strong the mean areas were for the past studies.
> Findings contradict the inverse relationship between population size and home range size found in past studies. Instead Jug Bay's high density-high home range size relationship is more likely explained by Madden's (1975) theory that high turtle densities in specific areas reflect the criticalness of that specific habitat.

Discussion

Habitat Preference

$>$ There was no significant preference among the seven habitat types.
$>$ More abundant in upland habitats but not to a significant degree
$>$ Females occupy a much larger and more diverse area of the Sanctuary, than the males
$>$ Females overall were seen using more habitats than males, which is most likely because of they require the meadow and wetlands in their nesting preparations

Conclusion

The most important findings of my study were that females' home range was significantly larger than that of males. This has important conservational implications, because larger, more diverse areas need to be protected in order to insure population health. Researchers should be cautious when lumping male and female home ranges because this may obscure interesting and important differences between the sexes.

Acknowledgements

I wish to thank...

- Chris Swarth for all his extensive assistance and guidance
- Mike Quinlan, Anna Moyer, Ramona Sampsell for their help with the 2004 telemetry turtles
- Dave Linthicum for his maps of the sanctuary
- The countless other volunteers and staff who have helped collect observation data over the past 9 years
- Jug Bay Wetlands Sanctuary for their logistical support

And the

- Friends of Jug Bay, without whose financial support this study would not have been possible.

[^0]: *Computation Method Key: Bivariate Normal Elipse (BNE); Minimum Polygon (MP); Convex Polygon (CP); Minimum

